
REAL HAMILTONIAN LOGARITHM OF A SYMPLECTIC

MATRIX

LUCA DIECI

Abstract. In this note we give sharp conditions under which a real symplectic
matrix S has a real Hamiltonian logarithm, and explicitly construct a logarithm.
In the classical work of Williamson, see [8], necessary and sufficient conditions
were alredy given. Our contribution is to provide contructive arguments based on
the canonical form of real symplectic matrices derived by Laub and Meyer in [4].

Notation. By Λ(A) = {λi(A), i = 1, . . . , n} we denote the spectrum of the matrix
A ∈ R

n×n; at times we write An to highlight the dimension of A. A matrix S ∈
R

2n×2n is symplectic if STES = E, where E =
[

0 I
−I 0

]
. A matrix H ∈ R

2n×2n is

Hamiltonian if HT E + EH = 0; equivalently, H =
[

H1 H2
H3 H4

]
, H2 = HT

2 , H3 =

HT
3 , H4 = −HT

1 .

1. Introduction

Given a matrix A ∈ R
n×n, we will call logarithm of A any matrix X such that

eX = A. Assuming that a logarithm X exists, it is a simple verification that if
V −1AV = T is any similarity transformation of A, then V −1XV is a logarithm of
T . In particular, this applies to the Jordan form of A; as a consequence, by letting
µi ∈ Λ(X), i = 1, . . . , n, and λi ∈ Λ(A), then eµi = λi. Now, if there exists a
(piecewise analytic) function “log” for which µi = log(λi), i = 1, . . . , n, then the
matrix X will be called a primary matrix function, otherwise it will be called non-
primary. With this distinction, we will still nonetheless write X = log(A), even
though X may be a non-primary function of A (i.e., the notation “log” is possibly
not indicating a function on the spectrum of A).

It is a well known fact that any invertible matrix A has a logarithm X. However,
X may be a complex matrix even if A is real. For practical and theoretical reasons,
it is important to characterize under which conditions on A ∈ R

n×n we also have a
real logarithm X. The following result is well known (e.g., see [3]).

Theorem 1.1. Let A ∈ R
n×n be given. Then, there exists X ∈ R

n×n such that
eX = A if and only if A is invertible and has an even number of Jordan blocks of
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each size relative to every negative eigenvalue. If A has any negative eigenvalue, X
cannot be a primary matrix function.

Next, consider a Hamiltonian matrix H ∈ R
2n×2n. It is a well known fact from

the theory of differential equations (e.g., see [9]) that etH is a symplectic matrix for
all t ∈ R. Recall that symplectic matrices are closed under multiplication, inversion
and transposition, whereas Hamiltonian matrices are closed under matrix addition
and transposition. Also, recall that a symplectic similarity transformation of a
Hamiltonian matrix gives a Hamiltonian matrix. Consider now a symplectic matrix
S ∈ R

2n×2n. The question is whether or not S has a real Hamiltonian logarithm.
In the next section, first we give –or recall, if they are known– a number of results

which will allow us to then prove Theorem 2.7, where sharp sufficient conditions
under which a real symplectic matrix has a Hamiltonian logarithm are given. This
result is predated (by 60 years!) by work of Williamson, see [8], who obtained
essentially the same conditions and argued that they were also necessary. However,
our proof of sufficiency is different and more constructive than that of Williamson.
For one thing, at the time of Williamson’s work, results like Theorem 1.1 were
apparently not available, so he had to spend some time ensuring that a real logarithm
existed in the first place. Moreover, he made use of the normal form of symplectic
matrices he had previously derived in [7]. There, explicit formulas were only provided
for low dimensional cases, and the general extension to higher dimension was not
obvious. As a consequence, for the logarithm, especially in the interesting case of
eigenvalue −1, explicit formulas are not easy to obtain from Williamson’s work. In
contrast, we utilize the explicit form of the canonical reduction of a real symplectic
matrix as given by Laub and Meyer in [4], who adopt a more constructive approach.
Then, we make available explicit formulas for the logarithm. These formulas are
useful for testing computational procedures.

2. Building a Logarithm

In essence, we build a logarithm by putting together logarithms of submatrices
obtained by restricting S to its generalized eigenspaces. To this end, we need the
canonical form of S. Recall that if µ is an eigenvalue of a symplectic matrix, then
so are 1/µ, µ̄ and 1/µ̄.

Williamson in [7], and then Laub & Meyer in [4], gave a complete classification
of the canonical form of a real symplectic matrix. The technique in [4] is more
constructive, and this is the approach we follow. The following result summarizes
the fundamental decomposition theorem.
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Fact 2.1. Let S ∈ R
2n×2n be symplectic. Then, there exists a symplectic T ∈ R

2n×2n

such that

V := T−1ST =

[
A B
C D

]
, where A = diag(A1, . . . , Ap) ,

B = diag(B1, . . . , Bp) , C = diag(C1, . . . , Cp) , D = diag(D1, . . . , Dp) ,

(2.1)

and all matrices Ai, Bi, Ci, Di are square of dimensions ni, n1 + · · · + np = n. The
blocks

[
Ai Bi

Ci Di

]
are canonical blocks, analogous to the usual Jordan blocks, whose

particular form depends on the eigenvalues of S. Each of these canonical blocks
is a symplectic matrix. The precise form of these blocks relative to the different
possibilities for eigenvalues of S can be obtained from [4]; in any case, each of these
blocks is associated to one of these eigenvalues’ types:

• a pair of real reciprocal eigenvalues µ, 1/µ;
• a quadruplet of complex conjugate eigenvalues not on the unit circle (α ±

iβ)±1;
• a pair of complex conjugate eigenvalues on the unit circle c+ is, c2 + s2 = 1,

s 6= 0;
• the eigenvalue 1;
• the eigenvalue −1. �

Remark 2.2. Without loss of generality, we assume that in the matrix V of (2.1),
the diagonal blocks in A, B, C, D relative to positive eigenvalues appear first,
followed by those relative to complex conjugate eigenvalues, then by those relative
to the eigenvalues on the negative real axis different than −1, and then by those
relative to −1. Such ordering can always be achieved by similarity transformations

with symplectic permutations of the type
[

Pk,l 0
0 Pk,l

]
, where Pk,l exchanges the k and

l blocks in A, B, C, D. So, A in (2.1) is A = diag(A1, . . . , Aν , Aν+1, . . . , Ap) and the
same for B, C, D, with the canonical blocks

[
Ai Bi

Ci Di

]
of V , i = ν + 1, . . . , p, being

associated to negative eigenvalues.

Lemma 2.3. With the above notation, suppose that there exist L(i) =

[
L

(i)
1 L

(i)
2

L
(i)
3 L

(i)
4

]
,

real Hamiltonian logarithms of the symplectic matrices
[

Ai Bi

Ci Di

]
, for i = 1, . . . , ν, and

L̂ =
[

bL1
bL2

bL3
bL4

]
real Hamiltonian logarithm of the matrix




Aν+1 Bν+1... ...

Ap Bp

Cν+1 Dν+1... ...
Cp Dp



. Let

L̃ :=
[

eL1
eL2

eL3
eL4

]
, where L̃l = diag(L

(i)
l ) , for i = 1, . . . , ν and l = 1, 2, 3, 4 . Then,

the matrix

L =

[
L1 L2

L3 L4

]
, where Ll = diag(L̃l, L̂l) , l = 1, 2, 3, 4 ,(2.2)

is a real Hamiltonian logarithm of V , and hence TLT−1 of S.
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Proof. To show that eL = V consider the block permutation matrix P associated to
the indexing [1, p+1, 2, p+2, . . . , ν, ν+p, ν+1, . . . , p, ν+p+1, . . . , 2p] (here, identity
blocks in P are of the same dimensions as corresponding blocks of V ). Then, it is

obvious that ePLP T

is a logarithm of the block diagonal matrix PV P T . To show

that L is Hamiltonian, first observe that L̃T E + EL̃ is of the form
[

−diag((L
(i)
3 )T ) diag((L

(i)
1 )T )

−diag((L
(i)
4 )T ) diag((L

(i)
2 )T )

]
+

[
diag(L

(i)
3 ) diag(L

(i)
4 )

− diag(L
(i)
1 ) − diag(L

(i)
2 )

]
,

and hence L̃T E + EL̃ = 0 because the L(i) are Hamiltonian. A similar verification
then gives that LT E + EL = 0, since also L̂ is Hamiltonian. �

Because of Lemma 2.3, we can restrict ourselves to finding real Hamiltonian loga-

rithms of the form L̃ and L̂. Now, to obtain L̃ of the form described in Lemma 2.3,
does not present conceptual difficulty. In fact, the matrices

[
Ai Bi

Ci Di

]
, i = 1, . . . , ν, are

symplectic matrices with no negative eigenvalues, and hence the L(i) can be taken
real Hamiltonian logarithms as in [9]. Thus, we can concentrate on finding loga-

rithms of the form L̂. To this end, we will use the specific structure of the canonical
blocks relative to negative eigenvalues.

Lemma 2.4. Let
[

Ai Bi

Ci Di

]
be a canonical block of size 2k relative to a negative eigen-

value ρ.

(a) If ρ < 0, ρ 6= −1, then the canonical block is

[
J 0
0 J−T

]
, where

J =

[
ρ 0 ... ... 0
1 ... ... ...
0 ... ... ... ...
... ... ... ... 0
0 ... 0 1 ρ

]
, hence J−T =

[
ρ−1 −ρ−2 ... (−1)k+1ρ−k

0 ρ−1 ... ...
... ... ... −ρ−2

0 ... 0 ρ−1

]
.

(b) If ρ = −1, we can write the canonical block in one of the following three
forms:
(i) diagonal:

[
Ai Bi

Ci Di

]
=

[
−I 0
0 −I

]
= −I2k ;

(ii) block diagonal:

[
K 0
0 K−T

]
, where

K = −

[
1 0 ... 0
2 1 ... ...
... ... ... 0
2 ... 2 1

]
, hence K−T = −

[
1 −2 ... (−1)k+12
0 1 ... ...
... ... ... −2
0 ... 0 1

]
;

(iii) block triangular:

[
K 0
W K−T

]
, where K and K−T are as in (ii) and

W = −

[ −2 ... −2
2 ... 2
... ... ...

(−1)k2 ... (−1)k2

]
.

Proof. The statement for (a) is verbatim in [4] (see formula (10) there). The state-
ments relative to cases (b)(ii)-(iii) can also be obtained from [4], by easily adapting
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to the case of eigenvalue −1 the canonical forms relative to the eigenvalue 1 (in par-
ticular, see formulas (12) and (13) there). The case (b)-(i) is given for completeness,
since we treat it differently from case (b)-(ii). �

We now consider the cases (a) and (b) of Lemma 2.4. Let us first realize in
which sense the canonical blocks of which in Lemma 2.4 correspond to standard
Jordan blocks. In the sequel, we make use of the following result, which we recall
for completeness (it is Theorem 6.2.25 in [3]). For notational convenience, we write
Jordan blocks as lower triangular blocks, rather than in the more standard way as
upper triangular blocks; clearly, these rewriting are equivalent.

Lemma 2.5. Given a m × m Jordan block J =

[
λ 0 0 ... 0
1 λ 0 ...
0 1 λ ... ...
... ... ... ... 0
0 ... 0 1 λ

]
, and a function f

(m− 1) times differentiable at λ. Then, the value of the primary matrix function f
evaluated at J is given by

f(J) =




f(λ) 0 0 ... 0
f ′(λ) f(λ) 0 ...

1
2
f ′′(λ) f ′(λ) f(λ) ... ...

... ... ... ... 0
1

(m−1)!
f(m−1)(λ) ... 1

2
f ′′(λ) f ′(λ) f(λ)


 .

Moreover, if f ′(λ) 6= 0, then the Jordan form of f(J) is the single Jordan block

J(f(λ)), that is




f(λ) 0 0 ... 0
1 f(λ) 0 ...
0 1 f(λ) ... ...
... ... ... ... 0
0 ... 0 1 f(λ)


.

With the notation of Lemma 2.4, quite clearly the canonical block in (a) corre-
sponds to two Jordan blocks, relative to ρ and 1/ρ (we can view J−1 as the result
of computing the function 1/ρ, and use Lemma 2.5). Of course, case (b)-(i) corre-
sponds to 2k simple Jordan blocks. For cases (b)-(ii) and (b)-(iii), a little algebra
gives

Lemma 2.6. The real Jordan form of the m×m matrix K = −

[
1 0 ... 0
2 1 ... ...
... ... ... 0
2 ... 2 1

]
is given

by the single Jordan block

(2.3) J =

[
−1 0 0 ... 0
1 −1 0 ...
0 1 −1 ... ...
... ... ... ... 0
0 ... 0 1 −1

]
.

As a consequence:

• the canonical block in (b)-(ii) corresponds to two identical Jordan blocks J
as in (2.3) of size k;

• the canonical block in (b)-(iii) corresponds to a unique Jordan block J as in
(2.3) of size 2k.
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Proof. The claim about the Jordan form of K is verified upon looking at K as
the function of J , K = p(J) and using Lemma 2.5. Here, p is the unique oscu-
latory polynomial satisfying: p(−1) = −1, p′(−1) = −2, p′′(−1) = −2 · 2!, . . . ,
p(m−1)(−1) = −2 · (m − 1)! . Next, consider the block in (b)-(ii): −

[
K 0
0 K−T

]
. Take

P1 = diag(−1, 1, . . . , (−1)k) and realize that P1K
−T P1 = KT , then apply the per-

mutation P2 = (k, k − 1, . . . , 2, 1) to get P2K
T P2 = K. Thus, with P :=

[
I 0
0 P1P2

]
,

we get P−1
[

K 0
0 K−T

]
P = [ K 0

0 K ]. Finally, consider the block in (b)-(iii). With same

notation, we now have that −P−1
[

K 0
W K−T

]
P = −K2k, and hence it corresponds to

J in (2.3) of size 2k. �

We are now ready to state

Theorem 2.7. Let a symplectic matrix S ∈ R
2n×2n be given.

(1) Suppose −1 /∈ Λ(S). Then there exists a Hamiltonian H ∈ R
2n×2n such that

eH = S if and only if S has an even number of canonical blocks of type (a)
of each size relative to every negative eigenvalue.

(2) Suppose now that −1 ∈ Λ(S), and that relative to the other negative eigen-
values the conditions in (1) are satisfied. Then S has a real Hamiltonian
logarithm if, relative to −1, there are only blocks of type (b)-(i), blocks of
type (b)–(ii) with k odd, and an even number of blocks of each size of type
(b)–(iii) or (b)–(ii) with k even.

Remark 2.8. In case S has no negative eigenvalue, the result can be found in [9]
and in [6]. The difficulty in the case of negative eigenvalues is that H cannot possibly
be a primary matrix function (see Theorem 1.1). As a consequence, the techniques
used in the above works cannot be used. In particular, the technique of [9] is based
on a contour integral representation for piecewise analytic functions, which of course
cannot be directly used. The technique of [6] is more algebraic, but essential use is
nonetheless made of having a primary matrix function. The statement of Theorem
2.7 should be compared with Theorem 3 in [8]. Despite differences in notation, the
conditions appear to be the same. Williamson’s result is truly remarkable, as it
predates by almost 30 years the “simpler” Theorem 1.1. In fact, as far as we could
determine, Theorem 1.1 was first proved by Culver in 1966, see [1].

Remark 2.9. Theorem 2.7 may appear surprising, since the assumptions needed
are almost the same needed to guarantee the existence of a real logarithm of S,
recall Theorem 1.1. In fact, with the exception of blocks of type (b)-(ii) with k
even, the other assumptions amount to requiring an even number of Jordan blocks
of each size for the negative eigenvalues (see Lemma 2.6 and the remarks after
Lemma 2.5). However, the reduction to Jordan form of a matrix is not a symplectic
similarity transformation, and thus the construction used to infer the existence of
a real logarithm of S, as in [3], does not deliver the existence of a real Hamiltonian
logarithm, regardless of the case (b)-(ii).
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We prove Theorem 2.7 constructively, by putting together logarithms of appro-
priate canonical blocks for which we give explicit formulas.

Lemma 2.10. With the notation of Lemma 2.4, let two canonical blocks of type
(a), both of size 2k, relative to the same eigenvalue ρ < 0, be given. That is, we

have the symplectic matrix Sρ =

[
[J 0
0 J ] 0

0
h

J−T 0
0 J−T

i
]
. Let Π = [ P 0

0 P ] be the symplectic

permutation matrix with P being the permutation matrix associated to the indices
(1, k + 1, 2, k + 2, . . . , k, 2k). Then, Sρ has the real Hamiltonian logarithm

log(Sρ) = ΠT

[
Lρ 0
0 −LT

ρ

]
Π , where

Lρ =




D 0 0 ... 0
1
ρ
I D 0 ... 0

−1

2ρ2 I 1
ρ
I D ... 0

... ... ... ... ...
(−1)k

kρk
I ... −1

2ρ2 I 1
ρ
I D


 , and D =

[
log|ρ| π
−π log|ρ|

]
.

(2.4)

Proof. We begin by noticing that if P T eLρP = [ J 0
0 J ], then P T e−LT

ρ P =
[

J−T 0
0 J−T

]
.

That log(Sρ) in (2.4) is Hamiltonian is evident. Now, we have

P

[
J 0
0 J

]
P T =




ρI 0 0 0 ... 0
I ρI 0 0 ... 0
0 I ρI 0 ... 0
... ... ... ... ... ...
0 ... 0 I ρI 0
0 ... 0 0 I ρI


 ,

where all identity blocks are 2×2, and it is simple to verify that eLρ = P [ J 0
0 J ]P T , us-

ing Lemma 2.5 and the fact that V −1DV =
[

iπ+log|ρ| 0
0 iπ+log|ρ|

]
with V = 1

log|ρ|
[ 1 1

i −i ].

�

Remark 2.11. There are infinitely many choices for a real logarithm of the block[
ρ 0
0 ρ

]
, since we can replace π in (2.4) by (2m + 1)π, m = 0,±1,±2, . . . . This same

remark applies later on as well.

Next we consider the case (b)-(i), and then the cases (b)-(ii) and (b)-(iii).

Lemma 2.12. Consider the symplectic matrix −I2k. Then −I2k has a real Hamil-
tonian logarithm given by

(2.5) L =

[
0 Σ

−Σ 0

]
, where Σ =

[
0 ... 0 0 π
0 ... 0 π 0
... ... ... ... ...
0 π 0 ... 0
π 0 0 ... 0

]
∈ R

k×k .

Proof. That the matrix in (2.5) is Hamiltonian is evident. That it gives a logarithm
is appreciated upon using the permutation (k, k +1, k−1, k +2, . . . , 1, 2k) to obtain
eL = −I. �
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Remark 2.13. Of course, the choice in (2.5) is by no means the only possible one.
Besides the usual freedom in replacing π by an odd multiple of π, at times some
rewritings of (2.5) are more insightful. For example, for k even, it is perhaps more
intuitive to give a logarithm as

diag(D, . . . , D︸ ︷︷ ︸
k times

) , with D = [ 0 π
−π 0 ] ,

whereas for k odd it will turn out to be useful to consider as a logarithm

(2.6) L =

[
0 Σ

−Σ 0

]
, where Σ =

[
0 ... 0 0 π
0 ... 0 −π 0
... ... ... ... ...
0 −π 0 ... 0
π 0 0 ... 0

]
∈ R

k×k .

Lemma 2.14. Consider the matrix K ∈ R
k×k of case (b)-(ii) (see Lemma 2.4):

K =

[
−1 0 ... 0
−2 −1 ... ...
... ... ... 0

−2 ... −2 −1

]
. Then, it has the (complex) logarithm

C := log(K) =




iπ 0 ...
2 iπ 0 ...
0 2 iπ 0 ...
2
3

0 2 iπ 0 ...

0 2
3

0 2 iπ 0 ...
2
5

0 2
3

0 2 iπ 0 ...

0 2
5

0 2
3

0 2 iπ 0 ...
2
7

0 2
5

0 2
3

0 2 iπ 0 ...
... ... ... ... ... ... ... ... ... ...
2

k−1
... 2

7
0 2

5
0 2

3
0 2 iπ




, if k even ,

C := log(K) =




iπ 0 ...
2 iπ 0 ...
0 2 iπ 0 ...
2
3

0 2 iπ 0 ...

0 2
3

0 2 iπ 0 ...
2
5

0 2
3

0 2 iπ 0 ...
... ... ... ... ... ... ... ... ... ...
2

k−2
0 ... 2

5
0 2

3
0 2 iπ 0

0 2
k−2

0 ... 2
5

0 2
3

0 2 iπ




, if k odd .

(2.7)

Proof. Let N := C − iπI, so that eC = −eN . Let G :=

[
1 0 ...
2 1 0 ...
... ... ... ... ...
2 2 ... 2 1

]
. We now show

that G has a logarithm given by N , so that eN = G, and the result will follow. Since
all eigenvalues of G are equal to 1, a logarithm for it can be obtained from the series

log(G) = 2

∞∑

j=0

1

2j + 1

[
(G − I)(G + I)−1

]2j+1
,

which converges for all matrices G with eigenvalues with positive real parts (e.g.,
see [2]). Now, observe that

(G − I)(G + I)−1 =

[
0 0 ...
1 0 0 ...
... ... ... ... ...
1 1 1 1 0

] [
1 0 ...
1 1 0 ...
... ... ... ... ...
1 1 1 1 1

]−1

=: F ,
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where F is the (forward shift) matrix

[
0 ...
1 0 ...
0 1 0 ...
... ... ... ... ...
0 ... 0 1 0

]
. Therefore, since F k+j = 0 , j =

0, 1, . . . , and F j is just the matrix of all 0’s except the j-th subdiagonal of 1’s, we

have that the above series for log(G) gives log(G) = 2
∑⌊k/2⌋−1

j=0
1

2j+1
F 2j+1, which is

N . �

Next, consider the case of two blocks of type (b)–(ii).

Lemma 2.15. Consider two canonical blocks of type (b)-(ii) as in Lemma 2.4,

each of size 2k. That is, we have the symplectic matrix

[
[K 0

0 K ] 0

0
h

K−T 0
0 K−T

i
]

with

K ∈ R
k×k. Then, this matrix has the real Hamiltonian logarithm

(2.8) L :=
[

P T 0
0 P T

] [
R 0
0 −RT

]
[ P 0

0 P ] ,

where P is the permutation associated to the indices [1, k + 1, 2, k + 2, . . . , k, 2k],

R =




D 0 ...
2I D 0 ...
0 2I D 0 ...
2
3
I 0 2I D 0 ...

0 2
3
I 0 2I D 0 ...

2
5
I 0 2

3
I 0 2I D 0 ...

... ... ... ... ... ... ... ...
2

k−1
I ... 2

5
I 0 2

3
I 0 2I D




, if k even ,

R =




D 0 ...
2I D 0 ...
0 2I D 0 ...
2
3
I 0 2I D 0 ...

... ... ... ... ... ... ... ...
2

k−2
I 0 ... 2

3
I 0 2I D 0

0 2
k−2

I 0 ... 2
3
I 0 2I D


 , if k odd ,

(2.9)

and D = [ 0 π
−π 0 ].

Proof. That L is Hamiltonian is evident, since [ P 0
0 P ] is symplectic. To show that it is

a logarithm, it suffices to show that R is a logarithm of P [ K 0
0 K ] P T . But this follows

at once from Lemma 2.14, using C there to obtain P [ C 0
0 C ]P T and then replacing

the diagonal blocks [ iπ 0
0 iπ ] by D. �

Next, consider a block of type (b)–(ii) of size 2k with k odd.

Lemma 2.16. Consider a block of size 2k of type (b)–(ii), with k odd, U :=[
K 0
0 K−T

]
, with K given in Lemma 2.4. Then, U has a real Hamiltonian logarithm

given by

(2.10) L :=
[

LG 0
0 −LT

G

]
+

[
0 Σ

−Σ 0

]
,

where LG is the logarithm of G given in the proof of Lemma 2.14, and Σ is given in
(2.6).
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Proof. Clearly, the matrix L in (2.10) is Hamiltonian. Observe that U = −I2k

[
G 0
0 G−T

]
,[

LG 0
0 −LT

G

]
is a Hamiltonian logarithm of

[
G 0
0 G−T

]
, and

[
0 Σ

−Σ 0

]
is a Hamiltonian log-

arithm of −I2k. Moreover, it is simple to verify that these two logarithms commute.
To complete the proof, it is enough to recall that if two matrices A, B commute,
AB = BA, then eA+B = eAeB. �

Next, consider blocks of type (b)–(iii).

Lemma 2.17. With the notation of Lemma 2.4, let two canonical blocks of type (b)-

(iii), each of size 2k, be given. That is, we have the symplectic matrix

[
[K 0

0 K ] [ 0 0
0 0 ]

[W 0
0 W ]

h
K−T 0

0 K−T

i
]

with K, W ∈ R
k×k. Then, this matrix has the real Hamiltonian logarithm

(2.11) L :=
[

P T 0
0 P T

] [
R 0
X −RT

]
[ P 0

0 P ] ,

where P and R are as in Lemma 2.15, and X is the symmetric matrix (all blocks
are 2 × 2)

X =




− 2
2k−1

I 0 − 2
2k−3

I 0 − 2
2k−5

I ... 0 − 2
k+1

I 0

0 2
2k−3

I 0 2
2k−5

I 0 ... 2
k+1

I 0 2
k−1

I

− 2
2k−3

I 0 − 2
2k−5

I 0 − 2
2k−7

I ... 0 − 2
k−1

I 0

... ... ... ... ... ... ... ... ...

0 2
k−1

I 0 2
k−3

I 0 ... 2
3
I 0 2I




, if k even ,

X =




− 2
2k−1

I 0 − 2
2k−3

I 0 ... 0 − 2
k
I

0 2
2k−3

I 0 2
2k−5

I ... 2
k
I 0

... ... ... ... ... ... ...

− 2
k
I 0 − 2

k−2
I 0 ... 0 −2I


 , if k odd .

(2.12)

Proof. Clearly L is Hamiltonian. To show that it is a logarithm, with X as given,
realize that

(2.13)

[
I 0 0 0
0 0 (P1P2)−1 0
0 I 0 0
0 0 0 (P1P2)−1

]
[

R 0
X R−T

] [ I 0 0 0
0 0 (P1P2) 0
0 I 0 0
0 0 0 (P1P2)

]
=

[
R2k 0
0 R2k

]

is a logarithm of
[

K2k 0
0 K2k

]
, where P1 and P2 are defined in the proof of Lemma

2.6. �

Proof of Theorem 2.7. With the notation of Lemma 2.3, recall that we needed to find

L̂ =
[

bL1
bL2

bL3
bL4

]
real Hamiltonian logarithm of V̂ :=




Aν+1 Bν+1... ...

Ap Bp

Cν+1 Dν+1... ...
Cp Dp



. Without

loss of generality, we can assume that in V̂ , after an even number of blocks of each
size of type (a), there appear first those relative to −1 of type (b)-(i), then those of
type (b)-(ii) of each size, and finally an even number of each size of type (b)-(iii).
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(This we can assume, by the same reasoning as in Remark 2.2). Then, we group
these blocks by pairing those of type (a), those of type (b)–(iii), and those of type
(b)–(ii), possibly leaving one block of type (b)–(ii) with k odd alone (if we have
an odd number of blocks of same size of type (b)–(ii) with k odd). Now we use
Lemmata 2.10, 2.12, 2.15, 2.16 and 2.17, to obtain the logs of each of these groups,

and hence we obtain L̂ by stacking together these logarithms in the same way as the
canonical blocks appeared. Since all logarithms obtained from the above Lemmata

are Hamiltonian, so is L̂, by a similar argument to that used in Lemma 2.3. �

As noticed in Remark 2.9, the assumptions we have for Theorem 2.7 are almost
the same as those of Theorem 1.1. It is natural to ask whether in Theorem 2.7
one could weaken the assumption relative to blocks of type (b)–(ii), to that of
any number of blocks of this type also for k even. Now, we already know from
Williamson’s arguments ([8]) that we cannot weaken the assumptions of Theorem
2.7. Still, in line with our constructive approach, here we show that the conditions
are sharp by means of an example. To be precise, we show that, in case k = 2, a
block of type (b)–(ii) does not have a Hamiltonian logarithm. To do this, we will
use the following result, a proof of which can be found in [5, Theorem 2, p. 69].

Lemma 2.18. Let U ∈ R
2k×2k be a symplectic matrix with all eigenvalues equal to

−1. Then U has a real Hamiltonian logarithm if and only if it has a real symplectic
square root.

Consider now

U =

[
−1 0 0 0
−1 −1 0 0
0 0 −1 1
0 0 0 −1

]
,

which is a block of type (b)–(ii) of size 4; to be precise, U is obtained after a
symplectic transformation: U =

[
V 0
0 V −T

] [
K 0
0 K−T

] [
V −1 0

0 V T

]
, with V = [ 2 0

0 1 ]. We
want to show that U has no real symplectic square root. To this end, we computed
all possible real square roots of U . These are given by the four parameters family

(2.14) U1/2 =




−a 0 0 − a2+1
c

b −a a2+1
c

−−2abc+a2d+c+d

c2

d −c a b
c 0 0 a


 ,

where a, b, c, d real and c 6= 0. It is now immediate to verify that for no choice of
these parameters we can obtain (U1/2)T EU1/2 = E, and so Theorem 2.7 is sharp.

Acknowledgment. I am grateful to Ken Meyer, who, upon reading an intial version
of this note, pointed me to [8], and to Alessandra Papini for her careful reading of
the manuscript.
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