POINT-TO-PERIODIC AND PERIODIC-TO-PERIODIC
CONNECTIONS.

LUCA DIECI AND JORGE REBAZA

ABSTRACT. In this work we consider computing and continuing connecting or-
bits in parameter dependent dynamical systems. We give details of algorithms
for computing connections between equilibria and periodic orbits, and between
periodic orbits. The theoretical foundation for these techniques is given by the
seminal work of Beyn [5] where a numerical technique is also proposed. Our al-
gorithms consist of splitting the computation of the connection from that of the
periodic orbit(s). To set up appropriate boundary conditions, we follow the algo-
rithmic approach used in [9] for the case of connecting orbits between equilibria,
and construct and exploit the smooth block Schur decomposition of the mon-
odromy matrices associated to the periodic orbits. Numerical examples illustrate
the performance of the algorithms.

1. INTRODUCTION
Consider a dynamical system of the form
(1.1) T = f(z,\), z(t) eR™, Ae ACRP,

where f : R™ x RP — R™ is assumed to be sufficiently smooth, and A is compact
(often, A is a closed subinterval of the real line). Let M_()\) be either a hyperbolic'
equilibrium y_(A\) of (1.1), or a hyperbolic? periodic orbit v_()\) of (1.1), and let
M. (M) be a hyperbolic periodic orbit v, () of (1.1), for A € A:

M_(A) =y-(A), or  M_(A)=7-(}),

(1.2) M\ =2(\),  A€A.

The periodic orbit(s) correspond to periodic solution(s) of (1.1), and we will use the
notation y, (¢, \) to denote the periodic solution (say, of minimal period 7, ) corre-
sponding to v, (A), and similarly y_ (¢, \) will be the 7_—periodic solution relative to
v—(N), if M_(X\) =~_(X\). In practice, My (\) will need to be found.
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A solution z(t, \), t € R of (1.1) is called a connecting orbit from M_(\) to M, (\)
if

(1.3) dist (z(t,\), ML(\)) — 0 as t — too.

A connecting orbit (if it exists) is determined only up to a time (phase) shift, since
if 2(t) is a connecting orbit, then also z(t+0) is, for any real o. So, momentarily, we
put forward the following system as the one which has to be satisfied by a connecting
orbit:

= f(x,\), —oco<t<oo,
(1.4) tlir_n dist(z(¢t, ), M_(\)) =0, tlim dist(z(t, \), M+ (X)) =0,

“+oo
¢($>y—,y+a )‘) = 07

where the scalar equation ¥(x,y_,y,, A) = 0 is the so-called phase condition and it
is used to fix the time shift; a particular choice will be given below. Depending on
whether M_()) is an equilibrium or a periodic orbit, we will refer to these as point-
to-periodic or periodic-to-periodic connections, respectively. In the latter case, we
will talk about a heteroclinic connection if v_ # v, and a homoclinic connection if
V- =7+

Computation of connecting orbits between two hyperbolic equilibria (point-to-
point connections), has received extensive numerical treatment in the last fifteen
years (see [4, 6, 9, 12, 13, 15] for a representative list of works on this subject), at
the point that reliable software, [14], is available for computation and continuation of
point-to-point connections. Point-to-periodic and periodic-to-periodic connections
have so far received less numerical attention, though the work of Beyn [5] laid down
the theoretical justification for numerical methods almost 10 years ago (see also [20]
for more recent theoretical work). Still, there are clear indications of the presently
increasing relevance of these connections in understanding the dynamics of (1.1).
For example, in [8] homoclinic orbits to a periodic orbit (periodic traveling waves)
are observed in a biological setting and in [7] in the water-wave model, in [17] the
authors anticipate the existence of homoclinic and heteroclinic periodic-to-periodic
connections in a model of semiconductors, and in [18, 21] the authors find homoclinic
and heteroclinic connections in a model of celestial mechanics and further elucidate
how this may lead to space exploration with prescribed itineraries. No numerical
methods are developed in [8] nor in [17]. In [18] and [21], the authors use a technique
taylor-made for the particular three-body problem they explore: Essentially, they
use a Poincaré map approach, and a Poincaré map approach was also proposed in
the early paper [3]. In [5], Beyn proposes a boundary value technique for the case of
point-to-periodic connections, and illustrates its performance on a point-to-periodic
connection for the Lorenz system. In this numerical study, Beyn uses so—called pro-
jection boundary conditions, but in an approximate form (see Remark 3.5 below),
and this will generally lead to loss of accuracy. A modification of Beyn’s approach
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(but still with an approximate form of projection boundary conditions) is discussed
in [20], where a point-to-periodic connection in the Lorenz system is also computed.
In [7], Champneys and Lord compute homoclinic periodic-to-periodic connections
also using boundary value techniques. Because of the specialized character of their
problem (it is Hamiltonian, and they are only concerned with homoclinic connec-
tions), Champneys and Lord make a number of modifications to the problem, such
as introducing an artificial parameter, unfolding, so that the Hamiltonian problem
is embedded into a larger generic system. Also, they do not extend their method
to the general case of periodic-to-periodic connections for (1.4). Nevertheless, our
general algorithms for (1.4) have some similarities to the work [7], in that we will
end up solving a boundary value problem on a finite interval using projection bound-
ary conditions obtained relying on the monodromy matrix(-ces) associated to the
periodic orbit(s). On the other hand, in [7], the authors left open the study of
error estimates due to truncation, and also used an inexact form of the projection
boundary conditions.

The central issue in all methods to compute connecting orbits is how to replace
the limiting process of (1.4) with a condition on a finite interval. In general terms,
one truncates the real line to a finite, but sufficiently large, interval [T_,7T,], T_ <
0 < T, and imposes boundary conditions at T4, replacing the limits in (1.4). An
appropriate choice for these boundary conditions is arrived at by realizing that the
connecting orbit must leave M_(\) along its unstable manifold and enter M, ()
along its stable manifold: By the stable manifold theorem (e.g., see [16]), these are
tangent to the unstable subspace E* () of M_(\) and to the stable subspace E% (\)
of M, (), respectively.

Remark 1.1. Recall that if M_()) is an equilibrium, then E™ () is spanned by the
generalized eigenvectors associated to the eigenvalues of D f,(y_(A)) in the positive
half plane. If M_(\) is the periodic orbit y_(\), then E“(\) is the span of the
generalized eigenvectors associated to the eigenvalues of the monodromy matrix (the
multipliers) outside the unit circle. Similarly, £ ()) is spanned by the generalized
eigenvectors of the monodromy matrix relative to v, (\) that are inside the unit
circle. Caution: As it is well known, the multipliers are uniquely defined for a given
periodic orbit, that is they do not depend on the origin of time we choose for the
periodic orbit itself. However, the generalized eigenvectors associated to monodromy
matrices obtained by linearizing about two periodic solutions with different time
shifts (i.e., origins of time) are different in general.

In line with this discussion, we will impose so-called projection boundary condi-
tions (see [4]) and will consider the following boundary value problem

I‘:f(l’,k), T—StST-l-

(15)  LoW)(@(T2) —y—(s(T) =0, Le(A\)(@(T%) - y(s(T1)) = 0,
¢($>y—>y+a>\):0,
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where L_ : R? — R™=Fm=m and L, : RP — R™+ 1™ are smooth functions of A, and
span E%(\) and ES(\), respectively. Here, ES*(\) is the center-unstable subspace
of v+ (), and similarly E(\). Also, in (1.5), ¥ corresponds to the truncated
version of the phase condition in (1.4). In (1.5), y+(s(7%)) is a point on My(\).
Naturally, in case M_(\) is an equilibrium then y_(s(7-)) is that very equilibrium.
Otherwise, y4(s(7%)) is some point on the periodic orbits 74 (A); the notation s(7%.)
clarifies that the point(s) on v+ in general depend on the value(s) of T¢. It must
be understood that —say— E*()) is associated to the generalized eigenvectors of
the monodromy matrix obtained from linearization about the periodic solution with
origin of time at s(7%).

In Section 2 we recall some theoretical results from [5, 20] on the well posedness
of (1.4), and give error estimates due to the truncation in (1.5). In Section 3, we
give details of our algorithms and how we implemented them, and in Section 4 we
illustrate their performance on some numerical computations of point-to-periodic
and periodic-to-periodic connections.

2. THE PROBLEM TO SOLVE

We first introduce some notation and review some results from [5] which are
needed for later development.

For each given A, we will write m*, m®, and m’, for the dimensions of the
unstable, center, and stable manifolds of M_(\), and analogously we will write
mY, mS, and m? relatively to M, ()). Here, m§ are the dimensions of M, (), so,
according to (1.2), and because of hyperbolicity of My (), we will have that m¢ = 0
if M_(A\) =y_(\), and m¢ =1if M_(X) =~_()\). We always have m? = 1, and of
course we always have

(2.1) m=m"+ms +m’ =mi+mL+m.

We let We(X), respectively W¢*(X), be the (center-) unstable manifold of M_(\),
respectively the (center-) stable manifold of M, (). Further, if we rewrite (1.1) as
the enlarged system

(2.2) zZ=g(2), glx, ) = [f(”g’)‘)} where z=(z, \),

then we can introduce the manifolds foliated by A: My = (J,c\(Mx(X) x {A}),
and analogously we will write W and W¢* for their (center)-unstable and (center)-
stable manifolds, respectively. Now W has dimension m¢ + m" + p and W¢* has
dimension 1+ m? + p. Suppose that there is a connecting orbit v, a solution z of
(2.2) connecting M_ and M, then, we must have v C W N W, We expect the
connecting orbit v to be isolated if for the tangent spaces at z(¢) we have

(2.3) Tz(t)qu N Tz(t)Wf_s =1T.x)y = span {Z(t)}y ViteR,
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and to persist if the intersection is transversal, i.e.
(2.4) T.yWe + T,yWe =R™P | ViteR.
Using (2.1), and assuming (2.3) and (2.4), one obtains the following fundamental

cs,cu,

relation between number of parameters and dimensions of W
(2.5) p=mY{ —m —m’ + 1

We refer to the original work of Beyn in [5] for a precise persistence result for the
connecting orbit . Here, we simply recall the essence of the key result of Beyn
about the well posedness of (1.4): “Suppose that z = (z, \) is a connecting orbit
between M_()\) and M ()), and that the phase condition 1 in (1.4) satisfies a (mild)
nondegeneracy requirement. Then the connecting orbit problem (1.4) is well posed if
and only if the manifolds W< and W¢* intersect transversally along Z in the strong

sense of (2.3)-(2.4)".

Remark 2.1. As pointed out in [5], if p does not satisfy (2.5) (and hence (2.3)
or (2.4) is violated), then we should either add parameters to the system or add
conditions for the parametrization of a manifold of connecting orbits. More precisely,
if p <m! —m®* —m® + 1, we should add (m’ —m* —m® + 1) — p parameters in
order to have a well-posed problem, while if p > m% —m% —m¢ + 1, then we can
add p — (m% —m! —m¢ + 1) constraints to select a unique connecting orbit.

2.1. Truncated Problem. To justify our algorithm, we need to establish the solv-
ability of (1.5) and estimate the error resulting from truncating the original interval
of integration (—oo, 00) to a finite interval J := [T_, T%]. In other words, we need
to study the error resulting from applying the projection boundary conditions to
the original problem. The results which follow, in particular Theorems 2.3 and 2.5,
generalize the corresponding statements in [4] from the point-to-point case, to the
point-to-periodic and periodic-to-periodic cases. For completeness, we outline the
key differences and generalizations of Beyn’s proofs, following [20]. The following
lemma is fundamental.

Lemma 2.2. Let F' : Bs(wy) — Z be a C' mapping from some ball of radius
d in a Banach space W into some Banach space Z. Assume that F'(wg) is an
homeomorphism and that for some constants ¢y, co we have

(26)  [[F'(w) = F'(wo) | S ez < er < | F'(wo) '™, Vaw € Bs(w),
(2.7) [ F'(wo) [| < (e1 = ¢2) 0.

Then F has a unique zero w,. in Bs(wy) and

(28) || Wy — We || S (Cl - 62)_1” F(w()) || ;

(2.9) [wi —ws || < (e1 — o) M| F(wi) = Fws) ||, ¥ wi,wy € Bs(wy).
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In the theorems below, we use the spaces
W :=C"J,R™) xR and Z:=C(J,R™)x R™=F"= x R™+T1
For appropriate a, 3 > 0, the norms are defined as

1@, Mllw = sup [[«(t)]le® + sup [lz(#) e + [[Al,
ted tedy

Iy, r—r)llz = My r )z + 1y, 7)llz - where
Iy r )z = sup [ly@®)]e*" + [Ir—]| ,  and
teJ_
Iy, rllze = sup ly@lle™ +llrell, 1=+ lloo
teJy

and where J_ = [T_,0] and J; = [0,7%]. With these norms, W and Z become
Banach spaces. Anticipating the asymptotic convergence of z(t) to y(t) with rate
¢ > 0, we impose the condition that, for some constant C, ||z(t) — y.(t)|| < Ce™
as t — =oo.

Theorem 2.3. Let (2.3), (2.4) hold, and let (z,)\) be an orbit connecting either a
hyperbolic equilibrium point y_(X) or a hyperbolic periodic orbit y_(\), to a hyper-
bolic periodic orbit v, (). Consider (1.5) and assume that f € C*(R™P R™), and
that Ly are C' (in \).

Then, there exists 6 > 0 sufficiently small and C' > 0, such that, for sufficiently
large interval of integration J = [T_, T\ ], the boundary-value problem (1.5) has a
unique solution (xy, \j) in a ball of radius § in W. Moreover, the following estimate
holds

(2.10) ) )
(@], M= (@5, Mliw < C (| L= (M) (@(T-) =y~ (s(T))) I+l L (M) (@(T3) =y (s(T)) ).

Proof. The idea is to apply Lemma 2.2 to wy = (Z], A) and

F(z,A) = (& — f(z,\), Lo(A\)(@(T2) —y-(s(12)), LeN)(@(T4) — y4(s(T4))) ).
The steps on the proof in [20, Theorem 4] apply here to obtain a bound || F’(wg) ™| <

¢; " and to find a § > 0 such that (2.6) holds with ¢, = ¢;. Finally, one gets:
(2.11)

1 (2], Mz = 1 L-(N(@(T-) = y-(s(To))I + 1L (W) (2 (T ) =y (s(T))) ]| — 0
as Ty — Zoo, which in turn implies (2.7). Then, by Lemma 2.2, F' has a unique

zero w, = (x7,As) in a ball of radius § in W, and combining (2.8) and (2.11) one
obtains the sought result with C'= (¢; — ¢p) 1. |

Remark 2.4. The statement of Theorem 2.3 is true up to a certain time shift, for
which the phase condition vanishes, and the error depends solely on the boundary
conditions. More precisely, any solution of (1.5) approximates some suitably shifted
connecting orbit with an error which is dominated by the error in satisfying the
projection boundary conditions. The next result pins down this error.
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Theorem 2.5. Under the assumptions of Theorem 2.3, for J = [T_, T\ ] suffi-
ciently large, we have3:

(2.12) 1(Z]7,2) = (27, A)|lw < Ce2min(ulT=hnsTe )

In (2.12), 0 < pu_ < Re p, for all unstable eigenvalues p of the Jacobian f,(y_(\))
(if M_(\) = y_()\)), or all unstable Floquet exponents of the monodromy relative to
Y_(N) (if M_(A) = ~v_(\)). Also, 0 < py < -Re p, for all stable Floquet exponents
u associated to the periodic orbit vy ().

Proof. The key tools to use are corollaries from the Stable Manifold Theorems for
equilibria and periodic orbits (see [16]), which state that solutions starting in the
corresponding unstable or stable manifold, sufficiently near the equilibrium or the
periodic orbit, approach them exponentially fast, as ¢ — —oo or t — oo respectively.
Moreover, in the case of a periodic orbit, the motion along the connecting orbit is
synchronized with that on the periodic orbit (convergence in asymptotic phase).
For the boundary condition at an equilibrium the exponential decay of the error is
proved in [4]: there exists 77 < 0, such that

(2.13) L&) —y_(s(t) = O(e™%-t) | for t<T).

Next we give the proof for the exponential decay of the error for the boundary
condition at the periodic orbit v,. If 0 < puy < -Re p, for all characteristic exponents
p with negative real part of the periodic orbit v, ()), then there exists 75 > 0 such
that for all t > T5,

(2.14) z(t) — 1+ (A) = O(e™) .

Then, for any ¢t > T3 there is always a time shift s(¢) : 0 < s(¢) < 7., such that
T(t) —yor(s(t)) = O(e #+'). With this, by a Taylor expansion, we get

LeN@(t) —y+(s() = LeN)(y+(s(t) = y+(s()) + Lt (V) (y(s(1)) — y(s(1)))
(Z(t) =y (s(t) + O(ll2(t) — g(s(O)* [D)-

Therefore,

(2.15) Le(N)(@(t) = y+(s(1)) = O([|2(t) — y+(s(®)]I*)
and by (2.14),

(2.16) Li(N)(@(t) = y+(s(t)) = O(e™").

As for the periodic-to-periodic case, if 0 < u_ < -Re p for all unstable Floquet

exponents of the periodic orbit v_(A), then there exists a 7} < 0 such that for all
t S Tla

(2.17) z(t) —y_(\) = O(e "), and

3again, (2.12) is true up to a time shift; see Remark 2.4
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proceeding in a similar way as we did for the periodic orbit 7., we can obtain (for
a time shift s(t)))

(2.18) L-(A\)(@(t) = 7-(s(1))) = O(e™").
Combining (2.13), or (2.18), and (2.16) with inequality (2.10) from Theorem 2.3, we
get the sought result. [ |

3. ALGORITHMS

We begin writing in details the problems we will solve. All intervals will be
normalized to [0, 1].

3.1. Point-to-Periodic. We need to find equilibrium y_()), periodic orbit v ()
and the connection x(t, A) solutions of

(& = (T, —T)f(z,)), 0<t<1,

fy-(A) = 0,
U = 7 flys,A), 0<t<1,
(3.1) y+(0) = y4(1),
L_(A)(2(0,A) —y-(1)) = 0,
L+<)\)($(1,)\)—y+<8(1>,>\)) = 0,
. Y,y A) = 0.

Recall that in (3.1), L_(\) € R™™ and L, (\) € R™ ™1™ and that we have p free
parameters, with p satisfying (2.5) (if not, recall Remark 2.1).

Computationally, it is more convenient to split (3.1) in the following form, which
is the one we eventually implemented:

= (T, =T )f(x,\), 0<t<1,
(3.2) L_(N)(z(0,A) —y-(\) = 0,
L+()\)(:C(1,)\)—y+(0,>\)) = 0,
and
Fly-(\) = 0,

where ¢ = 0 is a phase condition for the periodic orbit, serving the role of ¢» = 0 in
(1.5).

Remarks 3.1. Several observations are in order.
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(i) In (3.1), the term y(s(1), A) in the boundary conditions means that there
exists a choice of phase for the periodic orbit making the problem (3.1) well
posed. In (3.2), instead, the term y, (0, \) is the very given point of the
periodic solution of (3.3). The value 0 in y, (0, \) is not the same as setting
t =0 in (3.2), but it refers to the value t = 0 in (3.3).

(ii) Notice that the equilibrium and the periodic orbit enter in (3.2) (only)
through the boundary conditions.

(iii) Computationally, we will solve (3.2), and solve (3.3) to properly set up the
boundary conditions. In other words, we will always need to solve (3.3) with
a fixed value of A, which will be determined by the solution process of (3.2).

This is the reason we wrote A in (3.3). There are no free parameters in (3.3).
3.2. Periodic-to-Periodic. We separate the cases of heteroclinic and homoclinic

periodic-to-periodic connections.

3.2.1. Heteroclinic. We need to find the two periodic orbits v+ (\) and the connection
x(t, A) by solving

p

i o= (T, —T)f(@)), 0<t<I,
U = 1+f(y+,A), 0<t<1,
02(0) = yo(1),
(34) L_(\)(2(0,3) = y_(s(0), 2)) = 0.
L) (21 A) — ga(s(1),\) — 0.
\ (:L',y+,y_,)\) O

In (3.4), L_(\) € R™ Y™ and L, ()\) € Rm++bm,
We would like to split (3.4) similarly to what we did for (3.1). For clarity, we
proceed in two steps. First, we separate the solution process for one periodic orbit,

say 7-(A):

(& = (T, —T)f(z,\), 0<t<1,
Yr = 7o f(ysA), 0<t<1,
(3.5) y+(0) = y4(1),

and

(3.6) y(0
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where 0_ = 0 is a phase condition for the periodic orbit v_. Again, we remark
that, in (3.4), the writing y_(s(0), A) and y,(s(1),A) in the boundary conditions
means that there exist phase shifts for the periodic trajectories y4(-, A) for which
the problem is well posed. In (3.5), instead, y_(0,\) is now the very given value
of the periodic solution of (3.6), while y,(s(1),A) in (3.5) is still some point on the
periodic orbit (that is, there exists a phase shift for the periodic orbit v, (\) for
which (3.5) is well posed).

Now, for computational convenience, we want to separate the task of finding also
the other periodic orbit, y., from finding the connection. However, if we do so,
and fix say y, (0, ), we will no longer be guaranteed that the boundary condition
at the given T is satisfied. Nonetheless, since the connection, solution of (3.5),
enters the periodic orbit at +00 in asymptotic phase, we are guaranteed that there
is some possibly different time 7', at which the boundary condition at 7', is satisfied.
[Geometrically, the connection may have to go around the periodic orbit a bit in
order to satisfy the boundary condition at T';]. Therefore, we propose the following
split systems for the heteroclinic periodic-to-periodic connection:

i = Ty =T )f(z,A), 0<t<
(3.7) L_(N)(z(0,X) —y_(0,))) = 0,
L+()\)(l’(1,)\)—y+(0,>\)) = 0,

where T (or 7_) is now a free parameter, and

y:l::T:l:f(y:l:a/):)a O§t§17
(3.8) y+(0) ~ y+(1),

0 (y:I:> )\) = 07
with o4 = 0 phase conditions for the two periodic orbits 4. Similarly to before, we
solve (3.7), and need to solve (3.8) to set up the boundary conditions. There are no
free parameters in (3.8): We always solve (3.8) with a fixed value of A, hence the

notation .

L,

Remark 3.2. In general, appropriate values of T, and 7", ought to be found trying
to balance the error due to truncation to a finite interval; see Theorem 2.5. Although
it is possible to adapt to the present setting the strategy that Beyn proposed for
point-to-point connections in [4] in order to choose T_ and T, for the experiments
of the next section we have simply taken Ty, = —T_ = T. As a consequence, e.g.,
in (3.7), we end up solving & = 27 f(z,A), 0 < t < 1, with the parameter T free.

3.2.2. Homoclinic. In the case of v_(A) = v, (A), the relation (2.5) would give us
p=m4% —m" —1+4+1=0. That is, a homoclinic to a periodic orbit is a codimension
0 phenomenon: It persists with no free parameters. For this reason, we propose
the following adaptation of (3.7) (there is no A dependency in general, and recall
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Remark 2.1):

T = 2Tf(x), 0<t<1,
(39) L_(a(0) - y(0)) = 0,

Ly (a(1) ~ y(0)) = 0,

(3.10) y(0) =

Again, y(0) is the value at t = 0 of the solution of (3.10).

Remark 3.3. At times, one has to find connections for a differential system with
extra symmetries and some modifications to the above setups are needed. For ex-
ample, suppose we have a Hamiltonian system & = JVH(z,\), where H is the
Hamiltonian and J is the symplectic identity J = [ % {], and we need to find a
homoclinic to periodic connection. (Similar modifications would be needed for the
other cases considered in this work). The system has even dimension m = 2n, and
the periodic orbit now has two multipliers equal to 1. The regularization technique
in [4] (also adopted in [7]) can be used, the idea being to embed the original Hamil-
tonian system into a larger, generic, system, by introducing an artificial parameter
(which at the exact solution will need to be 0). To illustrate, the homoclinic to
periodic connection system (3.9) will become

- (JVH:C+,LLVH(x)), 0<t<1,
z(0 )_07

(
(x1 (0)) = 0,

(3.11)

where T and p are free parameters, and L_ and L, both are in R**12? The periodic
orbit can be found as solution of

y = 7(JVH(y) +vVH(y)), 0<t<1,
y(0) = y(1),

(3.12) H(y) = constant,
oly) = 0,

where 7 and v are free and the constraint “H(y) = constant” is required for well
posedness of (3.12). For a recent, comprehensive, discussion of techniques for con-
tinuing periodic orbits in Hamiltonian systems we refer to [19].
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3.3. Boundary Conditions. In general, it is important to define the boundary
conditions, i.e., L_ and L, in (1.5), in such a way that they depend smoothly on
A. This is more than a theoretical restriction imposed by Theorem 2.3, it is also
crucial for the success of the numerical methods. Indeed, typically (1.5) is solved
by a discretization method for boundary value problems (say, multiple shooting
or collocation, see [2, 14]) coupled with Newton’s method for solving the resulting
nonlinear system: Failure to have smooth functions L, will then give at best reduced
convergence rate and may altogether preclude convergence of the Newton iteration.

We adapted to the present setting the approach of [9] whereby smooth orthonor-
mal representations for L, are computed using smooth continuation of block Schur
factorizations; for an alternative, one may adapt the approach in [4]. We believe
that the way we compute L. and hence set up the boundary conditions is a major
contribution of this paper and improvement over the approaches of [5, 7, 20].

The procedure relative to an equilibrium (i.e., to find L_(X) in (3.2)) is the same as
explained in [9], to which we refer for details; in essence, we perform a smooth block
Schur factorization of the function f,(y_(A)). For the case of a periodic orbit, the
idea is to perform a smooth block Schur factorization of the matrix valued function
given by the monodromy matrix (function of \) associated to the linearized problem.
[This is a point where the splitting technique of Section 3.1 proves very convenient].
To clarify, consider defining L, () in (3.2), for A in a compact set D within which
(3.3) has unique hyperbolic equilibrium and periodic solution for each given A in
D. For each given A € D, let Y, (1,\) be the monodromy matrix associated to the
linearization of the periodic trajectory in (3.3). That is,

Y+ = T—l—fiv(y-i-(tu )\))Y+ , Y (0)=1.
Then, we seek a smooth (in A) orthogonal function Q(X) such that for all A

(3.13) e = | B

where Ry, € R™HLMEHL Ry € R™0™% | and if u € o(Ry;) then |p| > 1, and if
{1 € o(Ry) then |p| < 1. Partitioning @ = [Q1 Q2], we will then take L. ()\) =
QT (N\). To make sure that the function L, is a smooth function of )\, we use the
same technique used for equilibria in [9, 10], to which we again refer for details.

Remark 3.4. The first time, i.e., for the very first value of A, to find the decompo-
sition (3.13), we compute an ordered Schur form of Y, using routines from Lapack.
At later stages, say during the Newton iteration for solving (a discretized version
of) (3.2) (or, similarly, of (3.7), etc.), we use the smooth Continuation of Invariant
Subspaces (CIS) algorithm of [10]. Furthermore, it is quite commonly the case (see
our Examples in the next Section), that one needs to continue a branch of connec-
tions with respect to one parameter. In this case, we also use the CIS algorithm in
order to update the functions L.
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Remark 3.5. In [5, 20], the authors do not directly rely on the monodromy matrix
and moreover use fixed matrices to define Ly in (1.5). In [7], the authors rely on
the monodromy matrix to build the matrices L.: However, they use generalized
eigenvectors to build Ly (potentially an unstable procedure), do not update L4
during the Newton’s process, but keep them frozen, and furthermore do not smoothly
update Ly during continuation.

3.4. Implementation. A major advantage of having split the computation of the
connection from that of the periodic orbit(s), is that it is now possible to use so-
phisticated software for finding the connection, i.e., for solving the boundary value
problem (3.2) (or (3.7), or (3.9)). In fact, to find the connection, we have eventually
used the spline collocation code Colsys from the Netlib collection (see also [2]).
Since Colsys requires explicitly the boundary conditions and their derivatives, we
need to solve repeatedly the problems defining Li. Now, to find the equilibria in
(3.3) is a routine matter, e.g., using Newton’s method. To find the periodic solu-
tions in (3.3) (or (3.8) or (3.10)) one may also use some canned software, say AUTO
(see [14]), and at first we did just this. However, to reduce overhead and to avoid
some cumbersome programming details in forcing communication between the pe-
riodic solution problem and the connection problem, we ended up also writing our
own multiple shooting code to find the periodic orbits; since its performance, on
all problems we solved, was excellent, we will refer to the version of our algorithms
obtained when using this multiple shooting code for the periodic solutions.

Multiple shooting is a well known approach, and we refer to [2] for generalities on
the method. Here, we use it for finding periodic solutions. Thus, we solve

y=7f(y), 0<t<l1,
(3.14) y(0) = y(1) ,
o(y) =0,

where we take the standard phase condition

(3.15) a(y) = (y(0) = y-(0)" £ (y.(0)) ,

with y,.(0) a given reference vector (possibly, the solution at a previous continuation
step). We solve (3.14)-(3.15) coupled with Newton’s method. This way, the mon-
odromy matrix can be easily extracted from the Jacobian we have at convergence
of Newton’s method. Indeed, we need the solution at ¢ = 1, Y'(1), of the linearized
problem about the solution y(t): Y =7 f,(y(¢)) Y, Y(0) = I. If we set Sy = I, and
progressively S; 1 =Y ((j +1)h,jh)S;, j =0,...,N —1, clearly Y (1) = Sy. Here,
the points ¢t; = (j +1)h, j =0,..., N — 1, are the multiple shooting points. Letting
Yiy1 =Y ((j+ 1)h,jh), j =0,...,N — 1, this recursion is better rewritten in the
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matrix form

F I T S ][I
Y, —I Sy 0
}/'2 _— :
(3.16) -
SN_Q 0
Yo —1 Sn_1 0
L N —1 ] | Sy | | 0 ]

We solve (3.16) by Gaussian elimination with row pivoting (thus minimizing fill),
and find the (approximate) monodromy matrix Sy.

4. EXAMPLES
Here we illustrate the performance of our algorithms on several problems.
4.1. Point to Periodic. We consider (3.1), rewritten as (3.2)-(3.3).
Example 4.1 (Lorenz equation). Consider the well-known Lorenz equations:

i’l = O (ZL‘Q — 1‘1)
(4.1) T

Lt'g = I1X2 — b.fL’g.

)\Z(Zl — X9 — T1X3

First, we take 0 = 10, b = % and treat A as a free positive parameter. The bifurcation
diagram for this problem is well known. At A = 1.0 there is a pitchfork bifurcation
from the trivial equilibrium and further Hopf bifurcation point at A = 24.7368 along
both pitchfork branches. From these Hopf points, one can continue in A a branch of
hyperbolic periodic orbits (in the direction of decreasing ), which eventually turns
into a homoclinic connection to the origin.

In [5], Beyn approximates a connection from the origin to a periodic orbit for
A~ 24.05 (see also [20]). At this A value (and therefore near it), one has m* = 1,
and m? = 2, and the periodic orbit has m} = m% = 1. We want to compute this
connection and then continue it with respect to b. The balance (2.5) gives p = 1, i.e.,
we have one free parameter, A. If this connecting orbit exists for a specific value of A
as the result of the transversal intersection of the one-dimensional unstable manifold
of the origin with the two-dimensional center-stable manifold of the periodic orbit,
then as we vary b there will be a branch of connections.

Remark 4.2. The main difference between our algorithms and Beyn’s approach
(and also the approach in [20]) is the way we define the boundary conditions in
(3.2). In fact, probably a main merit of our algorithms is the way in which we
define and compute the boundary conditions by generalizing in a natural way the
application of projection boundary conditions from the case of an equilibrium point
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to the case of a periodic orbit, and adapting the strategy of continuation of invariant
subspaces of [9, 10] to the case of periodic orbits.

We solve (3.2)-(3.3) as explained in the previous section. An initial profile for
the connection was given by a crude approximation obtained by a single shooting
approach, with the initial guess A\ = 24.05. An initial approximation for the periodic
orbit in (3.3) was also obtained by single shooting. The method converges to the
connecting orbit with A = 24.057900322267. The computed periodic orbit has period
7 = 0.67717179808618 and Floquet multipliers p; = 1, ps = 1.029332933257, us =
0.000092936681. In the next two figures, we show the connection and the periodic
orbit at this A value, and then we show each component of this connecting orbit
as function of time (scaled to the interval [0, 1]). Notice how the connecting orbit
leaves the origin and enters the periodic orbit, after some time ¢ > 0.5.

45+

40

- ,,,\\
5 / -

30 /

-10

-5 20
FIGURE 1. (4.1) b =8/3, A = 24.057900322267. Connection.

One should compare our Figure 2 with [5, Figure 3]: To account for the difference,
recall that solutions are unique only up to a time shift. In Figure 3 we show several
other connecting orbits and the corresponding periodic orbits obtained by continua-
tion with respect to the parameter b, and in Figure 4 we plot the third components
of these connecting orbits, to illustrate how the family of connecting orbits evolve
with respect to time. Continuation in b was done with continuation step equal to
0.005.

In Table 1, we report on the computed values of the stable/unstable Floquet
multipliers for several values of b and A. Observe that these Floquet multipliers
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First component Second component Third component
20 T 25

20

15

10

—10

—15 : —15 : :
o 0.5 1 o 0.5 1 o] 0.5 1

FIGURE 2. (4.1) b=8/3, A = 24.057900322267. Solution components.

80 —

b=4.51666
70 — b=4.70666

T —— b=5.23666
60 |
50

40

30+

20

10 |

04l -40

FIGURE 3. (4.1): Branch of Point-to-Periodic connections

change very little during continuation, but the A’s for which there is a connection
change rapidly during continuation, thus giving an indirect sign of the robustness
of our algorithm. We stopped continuation at b = 5.23666 . .., simply because the
computations became quite time-consuming, though we had no indication that the
continuation could not be carried further.
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80

b=4.51666
— b=4.70666
— b=5.23666

01

601

50

40

301

20

101

0

I I I L . . . . .
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1

FIGURE 4. (4.1): Third component of connections

b A Period Floquet multipliers

2.6666666666 | 24.0579004345 0.677172 0.0000929366
1.0293329332
3.0866666666 | 26.1026935553 | 0.61911323893502 0.0001563313
1.0431878965
4.006028666 | 31.3332910155 | 0.52695220914778 0.0003390663
1.0852982508
4.5166666666 | 34.9853184083 | 0.48557753113517 0.0004812866
1.1101585551
4.7066666666 | 36.5284173879 | 0.47041509361629 0.0005458739
1.1193395430
5.2366666666 | 41.4875170876 | 0.43295209928827 0.0007732981
1.1447049577

TABLE 1. (4.1): multipliers

4.2. Periodic-to-periodic. We give a few examples of heteroclinic connections be-
tween periodic orbits.
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Example 4.3. We propose the following system as a test problem for heteroclinic
connections. We have

i=(1—w)y+wz(l—z?

y=1-w)(—z+A1—-2?)y) +w(z—7)

t=1-w)2((z" = (1+7)?) +wl—y+7+ A1 -y =) (z—7)]
w=w(l—w)

(4.2)

where v = 34+ A, and A is a real positive parameter. This system is a homotopy from
w =0 to w = 1 which in essence takes us to two planar systems living in the (z,y)
and (y, z) planes, respectively. In the (z,y) and (y, z) planes the equations reduce to
those of van der Pol oscillators. As it is well known, these oscillators have attracting
periodic orbits (restricted to their respective planes). There are several heteroclinic
connections between the two limit cycles of these van der Pol oscillators, and here
we are interested in computing (and continuing) the one from z = 0, w = 0, call
it v_, to that with z = 0, w = 1, call it v,. A simple computation shows that
associated to both . there are two multipliers less than 1, one equal to 1, and one
greater than 1. Therefore, we have m!{. = 1, m¢. = 1, and m%.=2. The balance (2.5)
will give us p = 0, hence there are no free parameters in the problem. In Figure 5
we show the connection for A = 1/2, in Figure 6 we show several connections for
A € [1/2,1], and in Figure 7 we show the second component of these connecting
orbits. These computations required an extremely careful initial guess in order to
converge to the right connections; once the initial guess was sufficiently close to the
solution, our algorithm was able to find the connection and compute a branch of
connections with relative ease. On the other hand, we were not able to satisfactorily
solve this problem with shooting methods: Usually, we ended up being attracted to
the stable values x = £1 as t — 00, and even when apparent convergence to the
sought connection was taking place the approximation was instead poor.

Example 4.4. [Coupled Oscillators| Consider the system

U = uy + Bu; — ud — 3ugus — ui (V¥ + v3) — 201v9uy

01 = —Bui + vy — v} — 3007 — vy (ud + u3) — 2u Uy

Uy = (1 — 2 )ug + (B — 2\)vg — u3 — 3udug — ug(v? + v3) — 2v1v9uy
Vg = — (B + 2N\ ug + (1 — 2X\)vg — v3 — 3vivy — vo(uf + ud) — 2ugugvy

(4.3)

where we fix 5 = 0.55 and ) is a free parameter. This model is taken from [1], and it
has been often used as a test problem for computation and continuation of invariant
tori; e.g., see [11]. Indeed, for A > 0, sufficiently small (up to A ~ 0.26052..., see
[11]), the system has an attracting invariant torus on which there are two periodic
orbits v_ and v, (there is phase locking on the torus). The two solutions of (4.3)
giving the periodic orbits can be explicitly given (see [1]) as

y_(t) = (0,0, p(t)cosb(t), p(t)sind(t)), y+(t) = (cos t, —sin ft, 0, 0),
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- -1

FIGURE 5. (4.2): Periodic-to-Periodic, A = 0.5

FIGURE 6. (4.2): Branch of Periodic-to-Periodic connections

where

p=(1-2X—2Asin20)p—p>, O=—F—2\cos20.
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FIGURE 7. (4.2): Second component of connecting orbits

We want to compute a branch of connecting orbits from ~v_ to v,.. We begin at
A = 0.1, where the Floquet multipliers are

v =1, po =0.000000039, pz = 0.0000000030, pyg = 10.393836557,

et =1, pe=0.0000000001, = 0.00000000001, s = 0.11102401100.

So, v— has a 1-dimensional unstable manifold, and ~; has a 3-dimensional stable
manifold . Therefore, the relation (2.5) would give p = —1. Recalling Remark 2.1,
we may add one extra condition to uniquely determine a connecting orbit. Motivated
by the splitting technique which we adopted for the algorithms, we thus can directly
attempt solving (3.7) and (3.8) with no free parameter (not even the value of 7',
(or T_) is free). In fact, it turned out to be a rather simple task to compute and
continue this heteroclinic connection from A = 0.1 to A = 0.195. At A = 0.195,
the computation became demanding, though we had no reason to suspect that it
could not be continued farther. The unstable multiplier of v_ grows quite rapidly
as A increases (e.g., it is already 240.187 at A = 0.195) and is responsible for a
progressively more rapid approach to ..

In Figure 8, we show several connections for different values of A\. Since the
periodic orbits lie in different planes and only have the origin in common, for our
3-dimensional rendition we used the coordinates (us, v, \/u? +v?). In Figure 9,
instead, we show the fourth component, vy, of these connecting orbits: It is apparent
that as A increases the connecting orbit gets close to the periodic orbit v, in a shorter
time.
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FIGURE 8. (4.3): Connections for several A

2=0.10
2=0.13
0.8 — A=0.17 []
—— A=0.181

FIGURE 9. (4.3): Fourth component of connections

5. CONCLUSIONS

We have proposed, justified, implemented, and tested, a class of algorithms for
finding connections between periodic orbits. The algorithms rest on two natural
ideas: (i) to split the computation of the periodic orbits from that of the connection,
and (ii) to use the monodromy matrices obtained when computing the periodic orbits
to set up projection boundary conditions for the connection. To enforce smoothness
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in the boundary conditions, we made use of an algorithm which computes smooth
orthonormal bases for invariant subspaces. We have solved several examples, and
shown that the proposed techniques are quite reliable.

As far as we know, our is the first work where a systematic study of a numerical
method for computing connections between periodic orbits has been undertaken.
Our implementations can probably be ameliorated in several ways, and we propose
to consider some of these in future studies. For example, we anticipate improvements
towards the selection of the continuation steps and the approximation of the periodic
orbits. We also anticipate comparison of our algorithm with the techniques in [7]
and [18, 21] for computation of homoclinic to periodic connections.
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ERRATUM: POINT-TO-PERIODIC AND
PERIODIC-TO-PERIODIC CONNECTIONS.

LUCA DIECI AND JORGE REBAZA

Following is a list of some corrections we wanted to make to our work before its
publication. Unfortunately, the corrections arrived late to the Publisher and were
not accounted for in the paper Point-to-Periodic and Periodic-to-Periodic Connec-
tions, which appeared in BIT 44, pp.41-62, 2004.

1. P.44, line 8. Replace [5] with [5,20].

2. P.45, line 18. Replace [T, T, | with J := [T_,T,].

3. P.45, lines 23-24. Modify as “... of Beyn’s proofs, following [20]. The follow-
ing lemma ... ”.

4. P.45, replace last 4 lines with the following between quotes.

“In the theorems below, we use the spaces
W =C'"J,R™) xR and Z:=C(J,R™)x R™=+"= x R™+T1
For appropriate a;, 3 > 0, the norms are defined as

Iz Mllw = sup [|z(®)][e™ + e, lz(®)lle™ + [IAL
+

teJ_
Iy, r—r)llz = [y, r )z + [y, re)llz - where
Iy, )z, = sup [ly(@)]|e* +|r_||, and
teJ_
1y llze = sup ly@lle™™ +lrell - 11= 11+ [l
ted

and where J_ = [T_,0] and J; = [0,7%]. With these norms, W and Z become
Banach spaces. Anticipating the asymptotic convergence of z(t) to y(t) with rate
¢ > 0, we impose the condition that, for some constant C, ||z(t) — y(t)|| < Ce=<!
as t — £00.”

- As a consequence of the above change, the norms in the statements of Theorems
2.1 and 2.2 need to be changed as well. So, the following changes are needed.

5. P.46, line 6-8. It is now Ks = {(z,\) : |[(2,\) — (Z|7, N)||w < 6}
6. P.46, formula (2.10). The left hand side changes to
(@[5, A) = (@7, A7) llw

7. P.46, line 13. Replace [4, Theorem 3.1] with [20, Theorem 4].
1
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8. P.46, formula (2.11). The left hand side changes to
1F (@5, Mz
9. P.46, formula (2.12). The left hand side changes to
1], A) = (2, A0)llw
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