Version of Saturday 224 June, 2019, 10:21
SLIDING INTEGRATION WITH NO PROJECTION

LUCA DIECI

ABSTRACT. In this work we show that numerical integration during
sliding motion, for piecewise-smooth systems, can be performed with-
out the need to project the approximate solutions on the constraints’
surface. We give a general algorithm, an order of approximation result,
and show the effectiveness of the technique on several examples. Com-
parison between projected and non-projected methods and the standard
regularization approach is also given.

1. INTRODUCTION: THE PROBLEM

Piecewise Smooth (PWS) systems, or systems with discontinuous right-
hand-side, appear pervasively in applications, and are continuing to receive
attention from the mathematical community from several different facets,
numerical, theorical, and applications.

The basic problem that motivated our work is the following. We have a
differential system where the vector field changes (typically, discontinuously)
as the trajectory encounters a discontinuity surface » of co-dimension 1,
which is defined as 0-set of a C2-smooth function . In mathematical terms,
we can assume that the surface X separates the state space in two regions,
where h > 0 and where h < 0. So, we will consider the following problem:

R"=R_UXUR,,
where
Y={zeR" h(z)=0, h:R" >R} |
R_={zeR"| h(z) <0}, Ry={zeR" h(x)>0}.
Further, we have the PWS system

I ()RR by A R R Uy

where we will assume that fi are defined in their respective domains Ry as
well as on X and in a neighborhood of it. Finally, we will let VA define the
gradient (normal) to X, and assume that Vh(xz) # 0, Vo € ¥ (hence, near
it).

(1.1)

1991 Mathematics Subject Classification. 65A36, 65P99.
Key words and phrases. Piecewise smooth systems, sliding motion, numerical integra-
tion, explicit Runge Kutta methods.
The author is very thankful to Cinzia Elia, for several and fruitful discussions on this
topic.
1

2 LUCA DIECI

From (1.2), obviosuly f(x) is not defined if x € ¥, and an extension of
the concept of classical solution is needed. The extension we consider is due
to Filippov, [6], who proposed to work with a differential inclusion:

f-(z(t)) x€R_
2(t) e F(z(t) = {(1 —a)f- +afs, a€l0,1]} reX
f+(2(1)) re Ry

With this, he proceeded to define a solution in an interval [0, 7) (henceforth,
a solution in the sense of Filippov) to be an absolutely continuous function
x :[0,7) — R™ such that for almost all t € [0,7) it holds that

2/ (t) € F(x(t)) .
The following fundamental result is also in [6, pp. 107-108].
Theorem 1.1 (Existence and Uniqueness). Let fi+ be C, and h be C? (in
a neighborhood of ¥). If, at any point x € 3 we have that at least one of

VAT (z)f_(x) > 0 and VR (z)f(z) < O holds, then there exists a unique
Filippov solution from each initial condition. O

Theorem 1.1 in particular comprises the configurations of transversal
crossing and attractive sliding mode.
Definition 1.2. Let x € X.
(i) In case
(VR (2) f~(2)] VA" (2) f4 (2)] > 0,
we say that at x there is a transversal crossing. The trajectory

will leave X to Ry, if VAT (z)f—_(x) > 0, or R_, if VAT (2) f1 (z) > 0.
(ii) In case

VT (z)f_(z) >0 and VAT (2)fi(z) <0,

we say that at x there is an attracting sliding mode. In such
case, attracting sliding motion takes place on X with Filippov vector

field
t' = [(2) =(1 - a2) f-(2) + a(@)f (2)
VW @)
VIT@)(f(x) ~ [+ ()

In what follows, we will make the two following simplifying assumptions
(these are generic, for C! vector fields f+ and C? function h).

(1.3)

a(@) : VAT (@)f,(2) = 0 — a(a)

Assumption 1.3.

(i) Entries on X are transversal.

(i1) In case sliding motion is occurring, exits from X are tangential.
In particular, a trajectory will exit ¥ with f_ whenever o = 0, and
with fi when o = 1.

SLIDING INTEGRATION WITH NO PROJECTION 3

1.1. Numerical methods for PWS systems. Essentially', two numeri-
cal approaches have been considered for the integration of a PWS system:
to regularize the system (regularization approach), or to monitor changes in
regime and adjust accordingly (event driven). Both methods require integra-
tion of a differential system, a task that we henceforth assume is performed
with a Runge-Kutta (RK) scheme. As customary, this is represented by the
tableau
c A

b)
where our interest will chiefly be in explicit schemes, so that the coefficient
matrix A will be strictly lower triangular.

(1.4)

1.1.1. Regularization. The idea here is to replace the PWS vector field (1.2)
with a globally smooth one, which reduces to fi away from a small neigh-
borhood of ¥. This basic approach was introduced by Sotomayour and
Teixeira in [9], and it has been used many times (by us, and others) also
computationally.

For example, one may use the system

(1.5) o' = (1-ge(2)f-(2) + 9e(2) f+(2) , 2=h(2),

where g, is a C* transition function, k > 1, such that

(1.6) 6e(2) = {1 i

0 z< —e¢

and ¢'(z) > 0 in (—€,€). A possibility (which we will use later in our
numerical experiments) is to take

1 Z>¢€

ge(2) =¢3+2(3—-(2)?) —e<z<e and z=h(z).
0 z < —¢

Remarks 1.4.

(i) When X is attractive, it is well understood (e.g., see [9]) that for
x € X, the limit as e — 0 of (1.5) coincides with the sliding vector
field (1.3). A bit emphatically, we can say that, in the limit of € — 0,
the regularization approach recovers the dynamics of (1.2).

(ii) Of course, the main computational appeal of this reqularization aproach
is that the reqularized problem can be treated as a standard ODE, and
one can use available software for IVPs. However, there are some
potential concerns. For one, we need to select small values of € in
order to be faithful to the dynamics of (1.2). But, for e small, it
is quite possible that the numerical trajectory will fail to step inside
the e-neighborhood of 3, and thus —when X is attractive— one may

lof course, there is always the possibility to integrate the PWS system as if it were a
smooth system, but this is not considered in this work

4 LUCA DIECI

end up using f+ causing an undesirable spurious oscillatory behavior
around Y. Also, in a neighborhood of ¥, the vector field (1.5) has
large derivatives, and this is also undesirable if we want to control
the local error. Indeed, our results in Section 4 will confirm that the
reqularization approach is at once advantageous (since it is simple
to use) and undesirable (since it is subject to spurious oscillations).

1.1.2. FEwvent driven. Here, one integrates the given PWS system, by adjust-
ing the stepsize(s) so to fall “exactly” on X, decide whether a transversal
crossing or sliding motion takes place, and eventually again adjust the step-
size to leave Y during sliding motion when o = 0,1. One needs to monitor
the different regimes in which the trajectory is: in a region Ry, or on 3,
and whether there is a transversal crossing or a sliding regime, and appro-
priate numerical integration schemes have to be adopted during the different
phases (see Remark 1.5). Several recent works have been concerned with
this approach, and we mention one-sided schemes and time reparametriza-
tion (letting 7 = h(x)), e.g. see [4, 5], and the public domain code DISODE45,
see [2]. The obvious advantage of event driven techniques is that they pro-
duce approximations which are faithful to the dynamics of the model (1.2).

Remark 1.5. When integrating (1.3) on X, we must make sure that the
numerical solution remains on it. Using a RK scheme on the differential
system (1.3), in general, will not guarantee this fact, and a projection step
is thus required (unless we have a special functional form for). Assuming
that the basic integrator uses a Runge-Kutta scheme, the projection itself can
be done in more than one way, for example only at the end of the step or
also for the intermediate stages (which, of course, is an additional expense).
In any case, by their very nature, projected schemes require additional work,
and thus have an added computational expense.

In this work, our purpose is twofold.

(i) First, we will show that, while integrating the piecewise smooth
(PWS) system during sliding motion regime, we can avoid pro-
jecting the solution in order to remain on the discontinuity surface.
We call the resulting method Event Method Without Projection, as
opposed to Event Method With Projection.

(ii) On a few examples, we will provide a comparison between the
Event Methods With/Without Projection, and further compare these
to the regularization approach. To the best of our knowledge, a com-
parison of different technique for use in integrating PWS systems is
lacking, and ours is a step in that direction.

As it turns out, the method without-projection is considerably less ex-
pensive, and much more robust, than the method with-projection. Like
projection techniques, it is also reproducing the dynamics of (1.2), unlike
solving the regularized problem. Our examples below will validate both of
these claims.

SLIDING INTEGRATION WITH NO PROJECTION 5

The simple idea we will exploit arises from the realization that the surface
31 is typically given by expressing one of the variables, say x1, in terms
of the others. This means that the differential system can be written in
partitioned form, singling out the variable x1, which is however known (in
terms of the other variables) on 3, and therefore on ¥ it suffices to find the
other components and then recover x; from the algebraic relation defining
it. One can then generalize this approach, for as long as it is known an index
i, 1 <1i <mn, for which the derivatives h,, # 0 (that such index must exist is
guaranteed by our assumption that Vh(z) # 0 for z €). Below we present
this idea in somewhat greater generality (not restricting to sliding motion
and a co-dimension one discontinuity surface), and show order results and
examples, then look at specific instances of sliding motion.

In the context of index-one differential-algebraic equations (DAEs), the
technique we present in this work is known as the state-space formulation;
see [8, pp. 375-376]. As far as we know, the motivation —and use— for sliding
motion in the context of an event method is original. We also note that,
for DAEs, the state-space method is used to eliminate once and for all the
algebraic constraint, while for us the goal is to avoid altogether integration
for the variable expressing the surface X; in other words, we reduce the size
of the differential system we integrate.

1.2. A model differential system. Consider the following basic problem.
Below, we let x € RP and y € R®, where p,s > 1, and we let n =p+s. We
have the differential system in R"™:

o T e () n=(8).

where F' and G are as smooth as desired.

Assume we know that the y-part of the solution of (1.7) will need to
remain on a surface 3, where 3 is defined explicitly by the relation y = k(z).
In other words, starting with ICs (z, yo) and yo = k(zo), the exact solution
of (1.7) will give (z,y) so that y = k(z).

When we discretize (1.7) with an explicit Runge-Kutta scheme, we will
obtain a discrete solution (x;,;), which approximates (z(t;),y(t;)) at times

tj, 7=0,1,2,.... The basic step with stepsize 7 can thus be written as
(18) |::;1:| = |::;0:| —|—T(I)(T7 Fa G7$07?J0)) or 21 = ZO+T®(T7 H7 ZO))
1 0

where of course @ is the discrete solution operator.

Now, it is well understood that, in general?, the discrete solution will not
satisfy the invariance relation, that is y; # k(z;), 7 = 1,2,.... This is a
standard concern, and one way to ensure having a discrete solution satisfy-
ing the constraint is to post-process the answers obtained by the RK scheme,
by projecting them back on the constraint manifold. One way to do this is

2E.g., unless the constraint expressed by y = k(z) is linear

6 LUCA DIECI

to first take a step as in (1.8), then modify y; by projecting it onto the con-
straint manifold, so that the new y; will satisfy k(z1) = y;. The projection
itself can be done with a Lagrange multipliers technique, by minimizing the
distance to the constraint manifold. We call the resulting method: integrate
and project. For later reference, we review a possible implementation of the
basic step of this integrate and project approach; this implementation is the
same that was used in [3], though we emphasize that at present our model
problem (1.7) is not necessarily one of sliding motion integration. Below,
we let h(z,y) =y — k(x).

1.2.1. Algorithm Integrate and Project.

1. Integrate (1.7) over one step 7, assuming that yg — k(zg) = 0, to
obtain

(1.9) 2 = [551] = 20+ 70 (7, H,) .
1

2. Let g(2) = (2 — 21)T(2 — Z1). Seek z = [ﬂ, such that h(z,y) =0

and ¢(z) is minimized. Using the Lagrange multipliers technique,
this requires solving the nonlinear system

w10 {vzg@) o Ajvzhj<z>] .

For as long as the integration stepsize 7 is sufficiently small, there is
a unique solution to (1.10), call it z;, which is the closest value z;
to z1, satisfying h(z1) = 0. (See Lemma 2.4 below).

Y1
and then continue integrating (1.7) starting with the values z1,y;.
Compactly, we write

3. With z1, the solution of (1.10), we recover 21 and y; from z; = [wl} ,

(1.11) [‘Z] = Proj (Bg] +79(r, F, G,xo,y0)> .

It is obvious that the technique based on (1.11) results in a numerical scheme
that has the same order of the underlying basic RK scheme. At the same
time, the need for having a sufficiently small stepsize T expressed in point 2.
above might become a hindrance to obtain an efficient time stepping scheme
(see our experiments below). Finally, for completeness, we detail the way in
which we solve the system (1.10) in our experiments. We use a simplified
Newton’s method with frozen Jacobian. More specifically, given the initial
guess 20 = 2, and A© = 0, we form and factor the Jacobian J at this

SLIDING INTEGRATION WITH NO PROJECTION 7

initial guess,

I Vhi ... Vhs
(VR)™ 0 ... 0
J == . . .)
(Vh)T 0 ... 0

and then perform the following simplified Newton’s iteration.

(0) Given values of MaxIts and TOL.

k) _ 3
(1) For k =0,1,...,MaxIts, or until || [z Z"‘Z}i

Az

Find the update [A/\

} by solving

! [ﬁi] == [Vg(z) + Z;l;éBAszhj(z)}

and let z(FTD) = (k) 4 Az AR+ — \(K) L AN

Not reaching the required precision TOL or performing more than
MaxIts iterations will result in a failure.

In this work, we will compare the Algorithm Integrate and Project to the
following.

1.2.2. Algorithm Substitute and Integrate.

1. We substitute a-priori the relation y = k(x) in the differential equa-
tion for x. That is, we consider

(1.12) T = F(x,k(zx)) .

2. We discretize the reduced system (1.12), obtaining approximations
x; at the values t;, and further approximate the y-values by using
the relation y; = k(x;).

The first result we give is Theorem 2.2; this is actually a rather obvious
result, but we give it for completeness. It states that the method “Substitute
and Integrate” will render approximations for both x and y values of the
same order as the order of the basic scheme used to integrate (1.12), and
thus we will have obtained a method with no need of projection step in order
to satisfy the constraint y = k(x), and of order of accuracy the same as that
of the scheme used to solve (1.12).

Our second result clarifies the need for a sufficiently small stepsize in the
context of a projection scheme.

8 LUCA DIECI

2. APPROXIMATION RESULTS

We have (1.7) with exact solution y which can be written as y = k(z).
So, let us rewrite the two systems we are considering, (1.7) and (1.12):

&= F(z,y)
(2.1) y=Glz,y)
z(0) = z0 , y(0) =yo = k(zo) ,
and
(2.2) = F(z,k(x)), z(0)=uz.

Lemma 2.1. If, in problem (2.1), the solution y satisfies the relation y =
k(x), then the vector field G has a special form, namely

G(z,y) = Dk(x)F(z,y),

where Dk(z) is the Jacobian of k. Thus, as function of x, y satisfies the
PDE

Proof. If y = k(x), then y = Dk(z)t = Dk(z)F(x,y) as required. And,
clearly, if y = k(x), then D,y = Dk. O

Theorem 2.2. Lett € [0,T], and 7 = T/N. For k = 1,2,...,N, let
(zk,yx) be the numerical solution to (2.1) obtained with a method of order
p, and let Ty be the numerical solution of (2.2) and further y, = k(Zy).
Then, z — x) = O(7P), and yi — yr, = O(7P).

Proof. This is a simple consequence of the following fact, which is a well
known order result for numerical schemes. We have

Bgﬁﬂ - BZ] = O() and a(ty) T = O().
Further,

k(z(t) — k(@k) = ko(Tp) (x(ty) — Tn) + O(T7),

and thus we immediately obtain z —Z, = x(ty) —Zr— (x(tg) — xx) = O(7P)
and yp — Uk = y(tr) — Uk — (Y(tx) —y) = O(77). 0

Remark 2.3. [t should be appreciated that the quantities hidden in the
O(1P) terms in Theorem 2.2 are not the same, since the derivatives appear-
ing in the error term (the O(1P) term) will be typically evaluated at different
points.

Lemma 2.4. For 7 sufficiently small in (1.9), there is a unique solution to
(1.10).

SLIDING INTEGRATION WITH NO PROJECTION 9

Proof. Write the system (1.10) as B(z,\) = 0, where B is the left hand side
of (1.10):

(2 = 21) + X3y AV (2)

B(z,\) = hiz) ,

Z1=z20+71P,
and note that z; depends on 7.

Next, let us look at 7 = 0. Since 2 satisfies h(zp) = 0, obviously we have
B(zp,0) = 0. Then, evaluate the derivative DB at (2,0), to get

I Vzhl(Z(]) vzhs(Z(])
(Vzhl(ZQ))T 0 oo 0
DB(ZO70) = [BZ) B)\](ZQ,O) = : : : ?
(V.ohs(20))T 0 . 0
I C| .
or more compactly as DB(zg,0) = cr ol with C' = [V, hi(20) ... V.hs(20)],
that is))
_vxkl _vxk2 _vwks
1 0 0
c—| o 1 0
0 0 1
L d 20
Therefore, DB(z,0) factors as Lo s ¢ and thus DB(z,0)
’ ’ ct 1| |0 =cTcol ’

is invertible if C' is full rank. But this last fact is clear from the above form
of C. Therefore, DB(z,0) is invertible and the Implicit Function Theorem
guarantees that in a neighborhood of 7 = 0 there exists a unique solution
(2(1), A(1)), smooth (in 7), solving B(z,A\) = 0 and passing through (2, 0)
at 7 =0. O

Remark 2.5. In a practical situation, it may be necessary to have T quite
small in order to guarantee that there is a unique solution to (1.10), and such
small value of T is not necessarily warranted by purely accuracy requirements.
See our Examples in Section 4.

3. NUMERICAL EXPERIMENTS

The two examples below serve a triple purpose: (i) to confirm that the
decrease factors in terms of the stepsize 7 we obtain for the method “Substi-
tute and Integrate” are the same we obtain for the method applied to the full
system (in other words, that the difference between the solutions decrease
according to the expected order); (ii) that the projected integrators and the
method “Substitute and Integrate” are of same order of accuracy, with the
former method requiring a stepsize restriction; and (iii) that the method

10 LUCA DIECI
T Fuler Midpoint | 4-th order
0.1 Fail 1.6107e-02 | 2.1245e-04
0.01 || 4.5535e-03 | 1.0995e-04 | 1.4311e-08
0.001 || 4.6957e-04 | 1.0490e-06 | 1.3982e-12

TABLE 1. Differences between using Projected integration
on (3.1) and (3.2). Time interval is [0, 10], IC z(0) = 0, and
error is oo-norm of the differences at all grid points.

“Substitute and Integrate” produces meaningful savings with respect to the
method “Integrate and Project.”

We implemented three different explicit Runge Kutta schemes, of order
1 (forward Euler), 2 (explicit midpoint rule), and 4 (the 3/8-th rule), with
the following tableaux, respectively:

0 0 0 0 0
010 0 ‘ 0 0 1/3 /3 0 0 0
T 1/2 | 1/2 0, 2/3 | =1/2 1 0 0
0 1 1 1 -1 1 0

| 1/8 3/8 3/8 1/8

Example 3.1. Here, the systems (1.7) is

d (z| 2y — 3x
dt M B [(231—3%)(008(%) —a?)]
and y = k(z) is the curve y = sin(x) — 23/3 4+ 2, so that (1.12) is
dx
dt
We integrate on [0,T)], with stepsize T = 1/10¥, k = 1,2, 3, and IC (0) = 0.
As expected, integrating (3.1) and (3.2) gave answers fully consistent with
the order of the method used, and there is no need to report on these results.
More interesting are the results in Table 1, where we compute the differ-
ence in the answers obtained by projecting the values obtained at each step
while integrating (3.1), see (1.11), and by integrating (3.2). Initial condi-
tion is taken x(0) = 0, and time interval is [0,10]. It should be noted that
projected Fuler method fails for 7 = 0.1: what fails is the projection step.
Otherwise, the methods behave as one would expect given their order.
Finally, we measured the computational savings (if any) obtained by inte-
grating (3.2) with respect to the projected integration of (3.1) as in (1.11).
We measured the computational cost by the execution time. We chose 100
random initial conditions, and integrated with our three basic schemes: Pro-
jected integrators on (3.1) versus direct integration of (3.2). For 7 = 0.1, all
projected schemes (Euler, midpoint, and 4th order RK) failed some of
the time, while for T = 0.01,0.001. Computational savings are expressed in
the table below, as ratios of ProjTime/NoProjTime (time taken when using

(3.1)

(3.2) = 2sin(z) —22%/34+4 -3z .

SLIDING INTEGRATION WITH NO PROJECTION

T Savings Fuler | Savings Midpoint | Savings 4-th order
0.01 5.4437 2.4053 2.3509
0.001 4.8653 2.2728 2.0697

TABLE 2. Savings when bypassing use of projected integra-
tors. Shown are ratios of times required for projected inte-
gration of (3.1) to the times required for direct integration
of (3.2). Expenses computed by integrating 100 random ICs

over [0, 10].
T Fuler Midpoint | 4-th order
0.1 || 2.0582e-02 | 1.0132¢-03 | 1.2996e-05
0.01 || 1.4283e-03 | 8.8429¢-06 | 1.0334e-09
0.001 || 1.3769e-04 | 8.6997e-08 | 1.0869e-13

11

TABLE 3. Differences between using Projected integration on
(3.3) and direct integration of (3.4). Time interval is [0, 10],
IC z1(0) = 22(0) = 0, and error is co-norm of the differences
at all grid points.

projected schemes, versus time required when bypassing the projection). We
summarize in Table 2.

Example 3.2. This second example is of a system in R*, where y = k(x)
is a two-dimensional surface. The system (1.7) is

T —2x1 —xo+y1 — 1
(3 3) i T2 _ |71 2x9 + 2 — Y192
’ dt | cos(z1)d1 — ¥330 ’
_y2 — Sin(l'g)fig + 1’1(/&1
yi| _ [ki(z1,22)] yi| [sin(zy) —23/3 +1
and [yJ = |:k2(3317x2)_ is the 2-d surface [yz] = [cos(a:g) +a2)2 - J;
that (1.12) becomes
(3.4)

ERETE —2x1 — mo +sin(z1) — 23 /3
dt |ze| — |z1 — 219 + 2 — (sin(wy) — 23 /3 + 1)(cos(z2) + 22 /2 — 1)

We integrate from t = 0 to t = 10 with stepsize T = 1/10%, k = 1,2,3,
and initial condition x1(0) = x2(0) = 0. Again, as expected, the answers
obtained integrating (3.3) and (3.4) are in perfect agreement with the order
of the methods.

Instead, in Table 3, we compute the difference in the answers obtained by
projecting the values obtained at each step while integrating (3.3), see (1.11),
and by integrating (3.4). Initial condition is taken x1(0) = x2(0) = 0, and
time interval is [0,10]. All methods behave as one would expect given their
order.

12 LUCA DIECI

T Savings Fuler | Savings Midpoint | Savings 4-th order
0.01 6.6397 2.4582 1.6263
0.001 5.3642 1.9901 1.2822
TABLE 4. Savings when bypassing use of projected integra-
tors. Shown are ratios of times required for projected inte-
gration of (3.3) to the times required for direct integration
of (3.4). Expenses computed by integrating 100 random ICs
over [0, 10].

Finally, in Table 4 we report on the computational savings obtained by
integrating (3.4) with respect to the projected integration of (3.3) as in
(1.11), over 100 random initial conditions. For T = 0.1, all projected RK
schemes failed some of the time. Computational savings are expressed as
ratios of ProjTime/NoProjTime.

Summarizing this first set of experiments, we see that use of the Algorithm
“Substitute and Integrate” in Section 1.2.2 is clearly as accurate as the Algo-
rithm “Integrate and Project” of Section 1.2.1, but less expensive, and more
robust (it never failed). The cost comparison of course depends on several
factors, including the problem itself, specifically the value of s (number of
constraints) in relation to the value of n (the dimension of the problem), but
also the scheme used and the stepsize; these considerations notwithstand-
ing, we observed that on average the cost of the “Substitute and Integrate”
algorithm is about 15-20% of the cost of the “Integrate and Project” algo-
rithm when using Euler method, about 40-50% for Heun’s method, and in
the range 42-78% when using the 4th order RK scheme.

4. APPLICATION: SLIDING MOTION

Here we show application to the case of sliding motion for a PWS sys-
tem. Notation is from Section 1. We implemented (and used) three different
numerical methods: (a) an event driven approach (see Section 1.1.2), using
projected integration during sliding motion regime (“Algorithm Integrate
and Project”), with projection step done as described in Section 1.2.1, (b)
an event driven approach bypassing the projection phase (“Algorithm Sub-
stitute and Integrate” of Section 1.2.2), and (c¢) the regularization approach
(see Section 1.1.1). In all cases, we used the basic 4th order RK scheme of
Section 3, in a constant stepsize mode, with the following modifications: (i)
for event driven methods, we adjust the stepsize to monitor the events “ex-
actly”, that is the points where we arrive on X or leave it; (ii) event location
is done with a simple bisection approach, declaring convergence when the
relevant monitor function (or the interval width) are less than a value TOL,
which we take to be 10eps (recall that eps ~ 2.2 x 10716); (iii) finding the
projected values is done with the simplified Newton iteration described in
Section 1.2.1 with MAXITS = 10 and TOL = 10eps; (iv) for the regularization

SLIDING INTEGRATION WITH NO PROJECTION 13

approach, we integrate the system (1.5) with g. given in (1.6). Choosing
the value of € for the regularization approach is actually quite delicate, since
only as ¢ — 0 one is expected to recover the dynamics of (1.2); see the
discussion in the examples below.

Example 4.1. This is a model of motion of a block of unit mass on a mov-
ing belt. When the block gets in contact with the belt, it may stick to it
(and hence it will follow the motion of the belt) until it is pulled back from
a restoring spring force, slip phase, and so forth. Our model is a general-
ization of one in [7], where the authors considered the case of a horizontal
(flat) belt, whereas we allow for imperfections in its shape, reflected in a
slightly ondulated form of the belt. This generalization makes the problem
much more challenging, since now there is a periodic orbit comprising of
several sticking and slipping regimes.
The differential system is of the form in (1.2):

[—xl + 17(21.2 - azg)} » @) <0,
(4.1) 2'(t) = :

[—561 - 17(20.8 + 3;2)} ;o h@)>0,

where the function h(x) is
(4.2) h(z) = 29 —024ncos(wnzy), n, w>0,

and the discontinuity curve is given by ¥ := {x : h(x) =0}. Forn =0, we
recover the model of [7], and our interest is for small, but nonzero, values of
n: 0 <n<Kl, and for w>> 1, so that X will be a high frequency and small
amplitude perturbation of the flat profile.

Of course, the wvalues of n and w impact the performance of the basic
integrator, as does the value of € when using the reqularization approach.
Nonetheless, some conclusive evidence emerged from our experiments. In
particular, in all cases tested, the events-method with no-projection is con-
siderably less expensive than that with projection; see Table 5. Comparisons
with the regularization technique depend on the values of n and w as well as
the reqularization parameter €; what is interesting is that —since the overhead
of events detection is eliminated— the CPU times for the reqularized system
are insensitive to the values of n,w (at least with our fized stepsize integra-
tor). As far as the value of €, ideally one would like the reqularized problem
to have the error induced by the reqularization of the same size as the inte-
gration error obtained with the basic 4th order RK scheme, so it would be
natural to select € = 7%, where T is the stepsize; however, especially in the
case of n = 0, this gave unsatisfactory results, with very obvious instabilities
in the numerical solution, so we ended up choosing € = 1073 for the results
in Table 5. Of course, when choosing € = 1073, the distance of the computed
solution from the exact ¥ (during what would have been a sliding regime)
1s appreciable. Finally, even for this larger value of €, integration of the

14 LUCA DIECI

n w | CPU Event-No-Project | CPU Event-Project | Regularization
0 - 1 1.6 1.95

0.01 || 100 1.55 2.85 2

0.01 || 200 2.25 4.65 1.95

TABLE 5. Example 4.1: CPU times, normalized, for events-
method with and without Projection and for regularized sys-
tem. Time interval is [0,15], IC z1(0) = z2(0) = —1, and
stepsize 7 = 1073, For the regularization approach, e = 1073.

reqularized system appears to follow a non-horizontal sliding line (and this
same behavior was also observed for other values of n and €). To illustrate
our last two comments, see Figure 1.

720, 10 2, 7=0.001 ‘ ‘ ‘ 0, 0001, 0001
T T T

0201 -

0.206
02005 -

0.204 [

01995 -
0202

0199

02 1 01985 - |
|
0198 |- \ q
0198 |- q
01975 -]

0.19 - ‘ 4 0197

“ 01965 - ‘ q

0194 | L L L L L L L " L L L L L L L L L ‘\
04 0.2 0 0.2 04 06 08 1 01 02 03 04 05 0.6 0.7 08 0.9 1

FiGureE 1. Regularized dynamics, n = 0. FEnlargements
along “sliding” surface. Left, e = 1072, Right, ¢ = 1073.

In summary, at least for the present problem, with our RK integrator, and
with constant stepsizes, the events method are more faithfully representing
the profile of the original PWS system, whereas integration of the reqularized
system runs into some instabilities. As far as the events techniques, clearly
the one with no-projection outperforms the projected one.

Example 4.2. This is a modification of a model of an ecosystem from [1]
(originally from [10]), modeling the control of spiders population on a vine-
yard through human intervention, namely spraying insecticide when the in-
sects population in the vineyard (on which the spiders prey) becomes too
large. It is assumed that the vineyard meighbors a wooded area, and that
the insects inhabit this area as well. The purpose of spraying is to reduce
the number of insects inhabiting the vineyard. In [1], the threshold function
triggering spraying is taken constant. Instead, we take the threshold function
dependent on the state (namely, on the spiders population), in the form of a

SLIDING INTEGRATION WITH NO PROJECTION 15

=0 w21, =01
T T T

L L L L L L
15 04 0.2 0 02 0.4 06 08 1 12 14

FIGURE 2. Events method. On Left, orbit, and periodic cy-
cle, for n = 0. On the Right, periodic orbit for w = 1, n = 0.1.

w=40, 1=0.01, 7=0.001 w=100, 7=0.01, 7=0.001
T T T T T T

FicURE 3. Events method. Two different trajectories for
n = 0.01 and w = 40, 100.

small amplitude periodic function of the spiders’ population with respect to
a constant threshold.
Below, the variable w indicates the number of insects in the wood, s indi-
cates the number of spiders, and v is the number of insects in the vineyard;
w
also, = indicates the vector | s
v

16 LUCA DIECI

w=100, 1=0.01, 7=0.001 BLOW-UP: w=100, 5=0.01, 7=0.001
T T T T T T T T T T T

0211

0.205 H

0195 [

L L L L L L L L L L
-15 -1 05 0 05 1 15 0.84 0.86 0.88 09 0.92 0.94 0.96 0.98 1 102

FIGURE 4. Events method. Showing also the surface ¥ and
a trajectory, when n = 0.01 and w = 100. Blow-up on the
Right clearly shows repeated exits and re-entries on .

The differential system is of the form in (1.2):

(4.3)
(rw (1 — %) — csw
foo= | (—a~|— Pl}f’:v +ckw) 7 h(z) <0,
4 |w v (9 - Hbj—v)
Zls| =
dt 1, rw (1 — &) —csw—e(l — qQw
fy = s(—a+ I]}lfv—kckw)—equ : h(z) >0,
| v (g — Hij) —equ
where the function h(x) is
(4.4) h(z) = v—v+ncos(wrs) ; n, w>0, =3,

0y
and the discontinuity curve is given by X := {x : h(z) = 0}. We are
interested inn: 0 <n <K 1, and w > 1.

In [1], the authors do not report on the values of the constants in (4.3)
that they used, so we used three different sets of values, to highlight different
behavior of the solution and different sliding behavior on X; the third set of
values is adapted from [10]. In all cases, population units are in kg/ha and
time is measured in weeks. The values we used are summarized in Table 6.

Remark 4.3. For the set of parameter values # 1, the solution is attracted
to X, and it remains there, exhibiting a decaying oscillatory behavior (seem-
ingly, slowly spiraling toward an equilibrium of the PWS system on X). For
the set of parameters # 2, the solution is attracted to X, slides on it, then
exits on the plane x1 = 0 in R_, where it remains, periodically entering and
exiting from %. Finally, for the set of parameters # 3, the solution arrives

SLIDING INTEGRATION WITH NO PROJECTION 17

Parameter Meaning Set #£ 1 | Set # 2 | Set # 3

r growth rate insects in woods 1 1 1

g growth rate insects in vineyard 0.1 0.1 0.5

W carrying capactiy of woods 20 10 1

H carrying capactiy of vineyard 100 20 7

k conversion factor insects to spiders 0.5 1 1

a death rate of spiders without insect 0.2 0.1 0.2

c birth/death rates due to encounters 1 1 0.24

b birth/death rates due to encounters 1 1 1.118

q % insecticide sprayed on vineyard 0.75 0.75 0.9

1 — g dispersed in woods
e effectiveness factor 0.8 0.8 0.6
K effect of spraying on the spiders 0.2 0.2 0.01

TABLE 6. Three sets of parameter values used in our exper-
iments for (4.3).

to X and then exits into R_, periodically returning to . See Figures 5 and

6.

FIGURE 5. Left: Parameter set # 1, and n = 0. Right:
Parameter set # 2, and w = 20, n = 0.01. Time interval
[0, 200].

For all three sets of parameter values in Table 6, and takingn = 0 in (4.4),
the reqularization approach exhibits the same behavior observed in Erample
4.1. Namely, it produces spurious oscillatory behavior (artificial chatter-
ing) around the sliding surface 2 (here, v = v is X), all the more visible
the smaller is the value of the regularization parameter €. Similar spurious
behavior is observed also for n > 0. At the same time, the reqularization
approach produces some approximation for all ranges of n and w we tried,

18 LUCA DIECI

L
0 0 51 52 53 54 55 56 51

FIGURE 6. Parameter set # 3. On the Right, we show the
trajectory for v(t) and a zoom in of the same during sliding.
Time interval [0, 100], w = 20 and n = 0.01.

Parameter Set | 7 w | CPU Event-No-Project | CPU Event-Project
1 0 - 1 1
1 0.01 | 20 1.01 1
1 0.01 | 50 1.05 Fails
) 0 | - 1.16 1.17
2 0.01 | 20 1.11 1.12
2 0.01 | 50 1.05 Fails
2 0.01 | 100 1 Fails
3 0 - 1.04 1.04
3 0.01 | 20 1 1.1
3 0.01 | 50 1.17 1.42

TABLE 7. Example 4.3 for the three different parameters set
of Table 6. Time interval is [0, 200] for Sets # 1,2, and [0, 100]
for Set # 3. IC (2,1/2,3/2), stepsize 7 = 1073.

and its execution time (recall that we are using fixed stepsizes) is effectively
independent of the values of n,w. This robustness is undoubtedly its main
merit.

When they both complete execution, the other two approaches (sliding
with and without projection) behave closely to one another, although the
projection approach fails more frequently than the unprojected one. Some
results are summarized in Table 7, where the times are normalized across
each set of parameter values.

SLIDING INTEGRATION WITH NO PROJECTION 19

5. CONCLUSIONS

In this work, we proposed and implemented an event based technique
which avoids projection when integrating a PWS system, with a co-dimension
1 singularity manifold, during sliding motion. We further compared this ap-
proach to one that performs projection, and to one that regularizes the
system. Of course, we had to make some algorithmic choices, the most im-
portant being what basic integration scheme to use: we opted for explicit RK
schemes in fixed stepsize mode. We made also other choices which may have
impacted our study; e.g., how to perform the projection (we used a station-
ary Newton’s iteration in the Lagrange multipliers formulation), and how to
locate events (we used a simple bisection method), and of course how many
iterations we allowed and the tolerance value used to declare convergence.
There are implications/limitations of all these choices, most relevant being
that failure during projection or events’ search leads to a halt, rather than a
stepsize reduction. All of these considerations notwithstanding, we believe
that some conclusions unambigously emerged. First, the events’ method
without projection outperformed that with projection, both in terms of exe-
cution time and of robustness. Second, the regularization approach showed
some instabilities around the discontinuity surface, and it introduces very
large gradients in the solution, which makes it an iffy candidate to faithfully
recover the dynamics of the PWS system; at the same time, the regular-
ization approach is largely immune by having to make algorithmic choices
typical of the events methods (there is no projection or events’ location).
Thus, given its overall simplicity, the regularization method will probably
remain a method of choice for several people.

Future extensions of the present work must include comparison with other
choices for integrators and with variable stepsize implementations. Also of
interest will be to see what can be said/done when the discontinuity manifold
is of higher co-dimension, say 2, at least for as long as sliding motion in this
case is well defined.

REFERENCES

[1] M. Bidk, T. Hanus, D. Janovskd. Some applications of Filippovs dynamical systems.
Journal of Computational and Applied Mathematics, 254 (2013), pp. 132-143.

[2] M. Calvo and J. Montijano and L. Réndez. Algorithm 968. Disode45: A Matlab
Runge-Kutta solver for piecewise smooth IVPs of Filippov type. ACM Transactions
on Mathematical Software, 43-3 (2016), pp. 1-14.

[3] L. Dieci and L. Lopez. Sliding motion in Filippov differential systems: Theoretical
results and a computational approach. SIAM Journal of Numerical Analysis. 47-3
(2009), pp 2023-2051.

[4] L. Dieci and L. Lopez. A survey of numerical methods for IVPs of ODEs with dis-
continuous right-hand side. Journal of Computational and Applied Mathematics, 236
(2012), pp. 3967-3991.

[5] L. Dieci and L. Lopez. One-sided direct event location techniques in the numeri-
cal solution of discontinuous differential systems. BIT Numerical Mathematics, 55-4
(2015), pp. 987-1003.

20

(6]

(10]

LUCA DIECI

A F. Filippov. Differential Equations with Discontinuous Right-Hand Sides. Mathe-
matics and Its Applications, Kluwer Academic, Dordrecht, 1988.

U. Galvanetto and S.R. Bishop. Dynamics of a simple damped oscillator undergoing
stick-slip vibrations. Meccanica v. 34 (1999), pp. 337-347.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd Edition. Springer series in Computational Math-
ematics. Springer-Verlag, Berlin-Heidelberg, 1996.

J. Sotomayor and M.A. Teixeira. Regularization of discontinuous vector fields, Pro-
ceedings of the International Conference on Differential Equations, Lisboa, (1996),
pp- 207-223.

E. Venturino, M. Isaia, F. Bona, S. Chatterjee and G. Badino. Biological controls of
intensive agroecosystems: wanderer spiders in the langa astigiana. Ecological Com-
plexity v. 5 (2008), pp. 157-164.

SCHOOL OF MATHEMATICS, GEORGIA TECH, ATLANTA, GA 30332 U.S.A.
E-mail address: dieci@math.gatech.edu

