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Abstract

We introduce a new technique, which we call the boundary method, for solving semi-discrete
optimal transport problems with a wide range of cost functions. The boundary method reduces
the effective dimension of the problem, thus improving complexity. For cost functions equal
to a p-norm with p ∈ (1,∞), we provide mathematical justification, convergence analysis, and
algorithmic development. Our testing supports the boundary method with these p-norms, as well
as other, more general cost functions.
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1. Introduction

In this work, we consider a new solution method for optimal transport problems. Numer-
ical optimal transport has applications in a wide range of fields, but the scaling properties and
ground cost restrictions of current numerical methods make it difficult to find solutions for many
applications.

The boundary method we propose focuses on a broad class of optimal transportation prob-
lems: semi-discrete optimal transport. Many other techniques assume semi-discrete transport,
either implicitly or explicitly, as semi-discrete formulations can be used to approximate solutions
to fully continuous problems, and the semi-discrete optimal transport problem is of practical rel-
evance itself.

Key challenges in numerical optimal transport are: (a) the design of numerical methods
capable of handling general ground costs, (b) efficient computation of the Wasserstein metric,
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and (c) solutions of three (or higher) dimensional problems. The boundary method addresses
these concerns by solving problems where the ground cost is a p-norm, p ∈ (1, ∞), and by doing
so in a way that reduces the effective dimension of the transport problem.

1.1. Description of optimal transport: the Monge-Kantorovich problem

The theory of optimal transport dates back to the work by Monge in 1781, [1]. In the 1940s,
Kantorovich’s papers [2, 3] relaxed Monge’s requirement that no mass be split, creating we now
know as the Monge-Kantorovich problem.

Definition 1.1 (Monge-Kantorovich problem). Let X, Y ⊆ Rd, let µ and ν be probability den-
sities defined on X and Y, and let c(x, y) : X × Y → R be a measurable ground cost function.
Define the set of transport plans

Π(µ, ν) :=
{
π ∈ P(X × Y)

∣∣∣∣∣∣ π[A × Y] = µ[A], π[X × B] = ν[B] ,
∀ meas. A ⊆ X, B ⊆ Y

}
, (1.1)

where P(X × Y) is the set of probability measures on the product space, and define the primal
cost function P : Π(µ, ν)→ R as

P(π) :=
∫

X×Y
c(x, y) dπ(x, y). (1.2)

The Monge-Kantorovich problem is to find the optimal primal cost

P∗ := inf
π∈Π(µ, ν)

P(π), (1.3)

and an associated optimal transport plan

π∗ := arg inf
π∈Π(µ, ν)

P(π). (1.4)

Kantorovich also identified the problem’s dual formulation.

Definition 1.2 (Dual formulation). Define the set of functions

Φc(µ, ν) :=
{

(ϕ, ψ) ∈ L1(dµ) × L1(dν)

∣∣∣∣∣∣ ϕ(x) + ψ(y) ≤ c(x, y) ,
dµ a.e. x ∈ X, dν a.e. y ∈ Y

}
. (1.5)

Let the dual cost function, D : Φc(µ, ν)→ R, be defined as

D(ϕ, ψ) :=
∫

X
ϕ dµ +

∫
Y
ψ dν. (1.6)

Then, the optimal dual cost is
D∗ := sup

(ϕ, ψ)∈Φc(µ, ν)
D(ϕ, ψ), (1.7)

and an optimal dual pair is given by

(ϕ∗, ψ∗) := arg sup
(ϕ, ψ)∈Φc(µ, ν)

D(ϕ, ψ). (1.8)
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When the ground cost is a distance function (often but not necessarily Euclidean), Monge-
Kantorovich solutions are related to the Wasserstein metric, a distance between probability dis-
tributions:

W1(µ, ν) := inf
π∈Π(µ, ν)

∫
X×Y

c(x, y) dπ(x, y). (1.9)

We have W1(µ, ν) = P∗ = D∗, and hence, we may refer to any of these as the Wasserstein
distance, the optimal transport cost, or simply the optimal cost.1

Remark 1. W1(µ, ν) is often written as W1, with µ and ν implied. Furthermore, as Equa-
tion (1.9) makes clear, W1(µ, ν) also depends on the ground cost function c(x, y). In the lit-
erature, the Wasserstein distance formula often assumes the ground cost to be a specific prede-
termined function, usually the Euclidean distance ‖x − y‖2.

Definition 1.3 (Monge problem). In certain cases, there exists at least one solution to the semi-
discrete Monge-Kantorovich problem that does not split transported masses. In other words,
there exists some π∗ such that

π∗(x, y) = π∗T∗ (x, y) := µ(x) δ[y = T ∗(x)], (1.10)

where T ∗ : X → Y is a measurable map called optimal transport map.2 When such a π∗ exists,
we say the solution also solves the Monge problem.

If the Monge-Kantorovich problem has a solution which solves the Monge problem, we can
assume without loss of generality that every π ∈ Π(µ, ν) satisfies

π(x, y) = πT (x, y) := µ(x) δ[y = T (x)], (1.11)

for some measurable transport map T : X → Y, and that the primal cost can be written

P(π) :=
∫

X
c(x, T (x)) dµ(x). (1.12)

1.2. Semi-discrete problem
The semi-discrete optimal transport problem we consider is the Monge-Kantorovich problem

of Definition 1.1, with restrictions on µ and ν, and c.

(1) Assume that µ satisfies the following:
(a) µ is absolutely continuous with respect to the Lebesgue measure.
(b) The support of µ is contained in the convex compact region A ⊆ X.

(Since A ⊂ Rd, it must also be the case that A is simply connected.)
(2) Assume ν has exactly n ≥ 2 non-zero values, located at {yi}

n
i=1 ⊆ Y .

(3) Assume c is a p-norm with p ∈ (1, ∞).

As we will show, each of these conditions is required for one or more of the theorems given in
Section 3. Condition (1)(a) ensures that the value of µ is bounded, which is required to show
Wasserstein distance convergence in Theorem 3.25. Conditions (1)(a), (1)(b), (2), and (3) are all
used to satisfy the conditions of Corollary 43 of [6], which we apply to show the µ-a.e. uniqueness
of the solution in Theorem 3.7.

1See also [4, p. 207], a definition of the Wasserstein metric Wp with p ∈ [0, ∞).
2One can also write π∗T ∗ as (Id × T ∗)#µ. Our notation is from [4, p. 3]. The alternative notation is used in [5].
3See Theorem 3.6, below, for a full statement of this result.
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1.2.1. Semi-discrete transport and the Monge problem
Since µ is absolutely continuous, |S | = 0 implies µ(S ) = 0 for all Borel sets S in X. Hence,

µ is nonatomic. Because c is continuous and µ is nonatomic, at least one solution to the semi-
discrete Monge-Kantorovich problem also satisfies the Monge problem, described in Defini-
tion 1.3; see Theorem B in [7]. Thus, by applying Equation (1.11), we can assume without loss
of generality that any transport plan π partitions A into n sets Ai, where Ai is the set of points in
A that are transported by the map T to yi. Using this partitioning scheme in combination with
Equation (1.12) allows us to rewrite the primal cost function for the semi-discrete problem as

P(π) :=
n∑

i=1

∫
Ai

c(x, yi) dµ(x). (1.13)

1.3. Shift characterization for semi-discrete optimal transport

Using this idea of sets Ai, we are ready to describe the shift characterization of the semi-
discrete optimal transport problem. The definition of the characterization, which follows, is
based on one given by Rüschendorf and Uckelmann in [8, 9].

Definition 1.4 (Shift characterization). Let {ai}
n
i=1 be a set of n finite values, referred to as

shifts. Define
F(x) := max

1≤i≤n
{ai − c(x, yi)}. (1.14)

For i ∈ Nn, where Nn = {1, . . . , n}, let

Ai := {x ∈ A | F(x) = ai − c(x, yi)}. (1.15)

Note that ∪n
i=1Ai = A. The problem of determining an optimal transport plan π∗ is equivalent to

determining shifts {ai}
n
i=1 such that for all i ∈ Nn, the total mass transported from Ai to yi equals

ν(yi).

The shift characterization is derived from the dual cost function given in Equation (1.6). For
any D(ϕ, ψ), suppose we define

ϕ′(x) = sup
y∈Y
{ψ(y) − c(x, y)}. (1.16)

Then D(ϕ′, ψ) ≥ D(ϕ, ψ) for all ψ.
For the semidiscrete problem, ϕ′ is exactly Equation (1.14), and the shifts ai correspond to

the value of ψ at each Dirac mass yi. Hence, the discrete problem is no more than a special case
of the general continuous problem where µ is a continuous density function and ν an empirical
measure. For a detailed derivation, see [5].

In the same way, the sets Ai correspond to the subdifferentials ∂c(yi). For a general cost func-
tion c, the sets Ai are referred to in analysis as Laguerre cells, and the map generated by the sets
Ai over A is called a Laguerre diagram. As we will discuss further on, the boundaries between
Laguerre cells are typically sections of hypersurfaces. When c(x, y) = ‖y − x‖22, the boundaries
are sections of hyperplanes, and the map as called a power diagram. See [10] for a detailed
evaluation of this special case. There are also cost functions where, for certain arrangements of
{yi}, the boundaries between Laguerre cells have positive Lebesgue measure in Rd. An example
is shown in Figure 4(c).
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1.4. Numerical approaches to the MK problem

Applications of optimal transport are found in many areas of research, including medicine,
economics, image processing, machine learning, physics, and many others; e.g., see [11, 12, 13,
14, 15]. For that reason, many people have focused their research on numerical methods for the
Monge-Kantorovich problem.

The solution to a semi-discrete problem can be approximated by treating the problem as fully
discrete, and the solution to a fully continuous problem can be approximated by treating it as
either semi- or fully discrete. By “treating,” we refer primarily to assumptions about continuity:
in practice, nearly every approach fully discretizes the problem, and the complexity of such
approaches is relative to the measure of the discretization.

The semi-discrete problem has received significant attention in its role as a discretization of
the continuous problem (where continuity assumptions are employed over X but not Y). Substan-
tial effort has been taken to quantify the extent to which solutions to such semi-discrete problems
approximate the solution to the original continuous problem; for example, see [16]. However, the
semi-discrete problem has interesting applications in its own right. Recent developments include
works in economics [17, 18, 19], image processing [20], and optics [21, 22]. In addition, the
power and flexibility of Laguerre cell tesselation (vs. Voronoi) drive ongoing research in physics
and other fields.

When the ground cost for the semi-discrete problem is the squared 2-norm, ‖·‖22, signifi-
cant numerical progress has been achieved. In 1988, Oliker and Prussner introduced what came
to be called the Oliker-Prussner algorithm for nonlinear Monge-Ampère-type equations in R2;
see [23]. Oliker and Prussner were significantly ahead of their time. A 1992 paper by Aurenham-
mer et al., [24], while describing a different algorithm (Newton’s method), explicitly connected
the Oliker and Prussner’s approach to semi-discrete transport and its resulting “Voronoi-type di-
agrams.” In 1998 Aurenhammer et al. published [25], a revision that clarified important details,
and incorporated an argument from [6] to guarantee that the sets Ai partition A µ-a.e. More recent
algorithms appear in [26, 16].

When sets Ai and A j share a boundary, for some i , j, there is a monotone relationship
between the volume of Ai and the difference of shifts, ai − a j. The Oliker-Prussner approach
and the boundary method both exploit this relationship, though in very different ways. Whether
applying the Oliker-Prussner algorithm or some variation such as Newton’s method, the Oliker-
Prussner approach begins with approximated sets Ãi, and directly perturbs the approximated shift
difference ãi−ã j in order to bring µ(Ãi) closer to ν(yi). This approach is extended over all the shift
differences,4 making it, in essence, a method for solving the Monge-Kantorovich dual problem
with c = ‖·‖22. Because the squared 2-norm is strictly convex, and it ensures that the boundary for
each adjacent Ai and A j is a hyperplane, algorithms based on the Oliker-Prussner approach are
generally able to quantify convergence behavior and guarantee termination after a finite number
of refinement steps.

Numerous efforts have been made to extend the approach proposed by Oliker and Prussner.
An application-focused paper by Caffarelli et al. extends the Oliker-Prussner algorithm to R3,
assuming special geometries [27]. Lévy presents a parallelized Newton’s method for three di-
mensions, one which scales well when Y consists of large numbers of Dirac masses [28]. Other
works, such as [29], attempt to integrate the Oliker-Prussner approach with the Wide Stencil

4They refer to a set of shift differences {ai − a j | i, j ∈ Nn, i < j} as a weight vector.
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methods developed for continuous Monge-Ampère problems; see, e.g., [30, 31]. All of these
assume c = ‖·‖22.

A few authors have attempted to develop approaches for ground costs other than the squared
2-norm. Most of these do not employ Oliker-Prussner. In [9], Rüschendorf and Uckelmann
report on numerical experiments with ground costs given by the Euclidean distance taken to the
powers 2, 3, 4, and 10. They assume that µ is the uniform distribution, and test various weights
and placements for the set {yi}

n
i=1. When an exact solution cannot be directly determined, they

fully discretize the problem and use a linear programming solver.
In [32], Schmitzer works with cost functions c = ‖·‖

p
2 for p ∈ (1, ∞), and applies a form

of adaptive scaling done by “shielding” regions: his method attempts to determine points of
influence in order to solve primarily local problems. He restricts his examples to R2.

Solving the semi-discrete problem for the 2-norm is discussed in [33].5 Starting with an
alternative form of Equation (1.17), taken from [34], Barrett and Prigozhin develop a mixed
formulation of the Monge-Kantorovich problem, which they solve using a standard finite element
discretization.

Kitagawa’s 2014 paper, [35], offers a potentially broad generalization of the Oliker-Prussner
algorithm, which works for ground costs other than ‖·‖22, provided those ground costs satisfy strict
conditions, including Strong Ma-Trudinger-Wang; see also [36]. His proposals, while densely
theoretical, do not include numerics or an explicit iterative scheme.

As [26] states, the special case c = ‖·‖22 has two methods specifically designed for solving
semi-discrete problems directly: the Oliker-Prussner algorithm and the damped Newton methods
proposed in papers like [25]. Both rely on some variant of what we call the Oliker-Prussner
approach, described above. However, approaches developed for fully discrete or continuous
transport can also be applied to the semi-discrete problems, though with varying degrees of
effectiveness. Rüschendorf and Uckelmann apply a discrete linear program solver in [9], and the
solver Barrett and Prigozhin use in [33] was developed for continuous transport.

Discrete methods assume a fully discrete (X, µ) and (Y, ν), and solve the resulting minimiza-
tion problem using network flow minimization techniques. As described in [37], there are over
20 established methods for solving such problems, and at least seven software packages capable
of handling one or more of these methods.

Most approaches to the fully continuous Monge-Kantorovich problem assume specific ground
costs and solve using techniques developed for elliptic partial differential equations, particularly
those of the Monge-Ampère-type:

−∇ · (a∇u) = f , where |∇u| ≤ 1, a ≥ 0, and |∇u| < 1 =⇒ a = 0. (1.17)

If the ground cost function is strictly convex, or otherwise satisfies the Ma-Trudinger-Wang reg-
ularity conditions described in [36], such problems are well-posed. To date, the requirements
of well-posedness have largely restricted the application of such continuous methods to well-
behaved cost functions such as ‖·‖22 or a regularized Euclidean distance. Continuous methods
currently in use apply finite difference, gradient descent, or the iterative Bregman projections
(a.k.a. Sinkhorn-Knopp) algorithm, all attempting to map X to a fully discretized Y [38, 39, 40].

As we will show, the boundary method offers a new approach to solving semi-discrete trans-
port, distinct from all of those described above. By and large, the solution methods described
above only work for a specific fixed cost, usually c = ‖·‖22. The boundary method quickly solves

5In [33], the partition of A is called an “optimal coupling.”
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problems with more general ground costs. When the ground cost is a p-norm, with p ∈ (1, ∞),
the boundary method provides a global rate of convergence that is proportional to the volume of
A.

2. Boundary Method

At a high level, the idea behind the boundary method is simple: track only the boundaries
between regions, without resolving the regions’ interiors. To do this in practice and obtain an
efficient technique, we must account for the interplay between discretization, a mechanism for
discarding interior regions, and a fast solver.

At its heart, the boundary method can be viewed as an adaptive refinement technique, one
which focuses on the shared region boundaries. The method discards interior regions, but a
well-chosen initial discretization prevents any corresponding loss of accuracy. The boundary
method’s strategy progressively refines the boundaries between individual regions Ai. Thus, by
the method’s very nature, any initial configuration must enclose the boundary in a way that allows
it to be distinguished from the region interiors. The necessary conditions for a well-chosen initial
discretization are presented in Theorem 3.21 and discussed in detail in Remark 5.

2.1. Boundary identity and system of equations
For all i, j ∈ Nn such that i , j, let

Ai j := Ai ∩ A j. (2.1)

The boundary set is defined as
B :=

⋃
1≤i<n

⋃
i< j≤n

Ai j, (2.2)

and for each i ∈ Nn, let the strict interior of Ai be defined as

Åi := Ai \ B. (2.3)

For all i, j ∈ Nn such that i , j, define gi j : X → R as

gi j(x) := c(x, yi) − c(x, y j). (2.4)

By Corollary 3.11 below, B , ∅ and for each x ∈ B there exist i, j ∈ Nn, i , j, such that x ∈ Ai j.
Because x ∈ Ai, we have F(x) = ai − c(x, yi), and because x ∈ A j, we have F(x) = a j − c(x, y j).
Combining and rearranging these, we get

gi j(x) = ai − a j , ∀x ∈ Ai j. (2.5)

Thus, Equation (2.5) implies that Ai j is a subset of a level set of gi j; the value ai − a j is constant,
regardless of which x ∈ Ai j is chosen. Using this information, for each i, j ∈ Nn, i , j, such that
Ai j , ∅, we can define the constant shift difference

ai j := gi j(xi j) ∀ xi j ∈ Ai j. (2.6)

Given a sufficiently large set of linearly independent equations of the form given in Equa-
tion (2.6), one could determine most or all of the shifts {ai}

n
i=1. As we show in Theorem 3.13, it
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is possible to obtain exactly (n − 1) linearly independent equations of the desired form, but a set
of n such independent equations does not exist.

Since we know that the set of shifts allows exactly one degree of freedom, the boundary
method’s approach is to obtain (n − 1) well-chosen ai j values, fix one ai, and use linearly inde-
pendent equations of the form given in Equation (2.5) to solve for the remaining (n − 1) shifts.
The crucial observation is that for the ai’s, there is no need to retain information about interior of
the regions.

The Wasserstein distance can also be computed without saving region interiors. Once we
have determined that R ⊂ Ai for some region R, the (partial) Wasserstein distance corresponding
to R is equal to

PR :=
∫

R
c(x, yi) dµ(x), (2.7)

and the total Wasserstein distance P∗ is equal to the sum of all such partial distances PR, computed
over every Ai.

Recognizing these facts, inherent in the shift characterization, inspired both the boundary
method’s name and its guiding principles, summarized below:

Do not solve for the entire transport plan;
rather, identify region boundaries.

To illustrate how this principle is implemented, we present the following example.

Example 2.1. Let X = Y = [0, 1]2. Assume µ is the uniform probability density, so for all Borel
sets S ⊆ A, µ(S ) = |S |, and that ν has uniform discrete probability density, so ν(yi) = 1/n for
1 ≤ i ≤ n. Take n = 5, with the five points where ν has nonzero density distributed as shown in
Figure 1.

Let c be the squared Euclidean norm, ‖y − x‖22. Suppose a discretization with width 2−5 is
sufficient to provide the desired accuracy and that we apply the boundary method with initial
width 2−4.

Assume P̃ is the partial transport cost: the sum cost of transport over all regions PR so far,
where PR is defined as in Equation (2.7). Each iteration consists of two steps. In Step (1), we
discretize the remaining parts of A using the given width, and we solve the discrete transport
problem. In Step (2), we compute the transport cost of all boxes in the interior of each region,
add those costs to P̃, and discard the computed boxes. For the discard, remove the transported
mass from ν, and remove the transported boxes from A (so those regions can be safely ignored
during any future discretized transport computations).

Figure 1 shows the state of the boundary method during the first iteration. In Figure 1(a),
we have just completed Step (1): the discrete transport map has been computed, but we have not
identified interior points or added anything to the partial transport cost P̃. Figure 1(b) shows the
state of the algorithm after Step (2): the interior regions have been identified (shown in gray),
the partial transport cost has been computed for those regions, giving us P̃ = 0.01387, and those
regions have been discarded.

Figure 2 shows the state of the boundary method algorithm during the second iteration. Here,
the regions eliminated in Iteration 1 are shown in a darker gray, to distinguish new interiors from
those previously removed. In Figure 2(a), Step (1) has just been completed. As can be seen by
comparing Figure 1(b) to Figure 2(a), the boundary and interior regions are the same ones
that we had at the end of the first iteration, but refining the boundary set to width w2 = 2−5
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y0

y1

y2

y3

y4

(a) Iteration 1, Step (1): P̃ = 0.00000

y0

y1

y2

y3

y4

(b) Iteration 1, Step (2): P̃ = 0.01387

Figure 1: Iteration 1 of Example 2.1: w1 = 2−4, computed regions in gray

allows us to compute a more refined transport map. Since the regions in gray were discarded
at the end of Iteration 1 Step (2), they are not part of the discrete transport solution computed
during Iteration 2. Because Step (1) does not add to the identified interior regions, the partial
Wasserstein distance P̃ is also unchanged from Figure 1(b).

After Step (2) of the second iteration, shown in Figure 2(b), more of the interiors have
been identified. The partial transport cost shows a corresponding increase: we now have
P̃ = 0.02898. Because we have achieved our desired refinement, a width of 2−5, we end the
iterative process.

We have not computed any transport cost for the white areas remaining in Figure 2(b). Hence,
P̃ is strictly less than the actual transport cost P∗. We may want to perform further computations
on those white areas in order to approximate the remaining transport cost and calculate an error
bound for our approximation.

y0

y1

y2

y3

y4

(a) Iteration 2, Step (1): P̃ = 0.01387

y0

y1

y2

y3

y4

(b) Iteration 2, Step (2): P̃ = 0.02898

Figure 2: Iteration 2 of Example 2.1: w2 = 2−5, computed regions in gray

2.2. The boundary method

We will now formalize the process described in Example 2.1. As described below, the bound-
ary method generates a grid Ar over the unevaluated region of A, and uses it to determine the
subgrid Br containing the boundary set B. This subgrid is determined by finding an optimal
transport solution from the grid Ar to the point set {yi}

n
i=1.
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Although not strictly necessary, we will restrict ourselves to A = [0, l]d and apply a Cartesian
grid over that region. At the r-th refinement level of the algorithm, the grid will thus consist of
a collection of boxes with width wr in each dimension of our discretization. By a slight abuse
of notation, we use xr to refer to such a box, centered at the point x. Thus, µ(xr) refers to the
µ-measure of the box of width wr centered at x.

Neighboring boxes are those with center points that differ by no more than one unit in any
discretization index. The set of neighbors of x is denoted N(x) (defined in Equation (3.11),
below). Because regions of µ-measure zero need not be transported to any particular yi, boxes of
positive weight that are adjacent to such regions are always retained. We refer to such a box as
an edge box. Thus, the set of edge boxes is

edg(Ar) := {x ∈ Ar | µ(x) > 0 and ∃ xn ∈ N(x) such that µ(xn) = 0}. (2.8)

Because A contains the support of µ, every box of positive mass that is adjacent to the boundary
of A is an edge box.

A box whose neighbors and itself all have positive measure is referred to as an internal box.
The set of internal boxes is

int(Ar) := {x ∈ Ar | µ(x) > 0 and µ(xn) > 0 for all xn ∈ N(x)}. (2.9)

Boxes of µ-measure zero are not part of edg(Ar) or int(Ar) and they are discarded when the
optimal transport problem is solved. We need not be concerned about losing a region Ai due to
this discard process, since this would imply µ(Ai) = 0 (and hence ν(yi) = 0, which contradicts
the conditions in Section 1.2).

Region interiors are identified by comparing the destination of each x ∈ int(Ar) to the desti-
nations of its neighbors. Edge boxes are never considered part of a region interior, so they are
passed directly to Br.

In order to remove identified region interiors, we also maintain a running total of the untrans-
ported mass, given by partial measure ν̃. To preserve the balance of the transport problem, each
time a region xr is transported from A to yi, the remaining amount that can be transported to yi,
ν̃(yi), must be reduced by µ(xr).

We can approximate the Wasserstein distance P∗ by generating a running total over region
interiors: P̃. This P̃ is an increasing function of r, and for all r, P∗ ≥ P̃. The Wasserstein distance
over any remaining boundary region is evaluated at completion.

Remark 2. Further approximations may be required for a truly general algorithm. Depending
on µ, it may be necessary to approximate the mass of each box, µ(xr). Depending on µ and c, the

Wasserstein distance over each box, given by
∫

xr
c(z, yi) dµ(z), may also require approximation.

However, in this work we assume that the integrals can be computed exactly. In practice, this is
not a significant limitation. Most numerical applications focus on the exactly-computable cases
where µ is uniform and c is the Euclidean or squared-Euclidean distance. Furthermore, as we
show in Section 4.1, the set of exactly-computable options is quite large.

2.2.1. Step (1): solving the discrete optimal transport problem
The proofs in Section 3 assume the discrete solver is exact, but in practice we achieve good

results using solvers whose error satisfies reasonable bounds. Thus, the ideal discrete algorithm
should be fast, have controlled error, and possess reasonable scaling properties. To satisfy these
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Boundary method algorithm

(0) Set P̃ = 0, ν̃ = ν, and r = 1. Create Ar = A1 from A.
(1) Solve the discretized transport solution.
(2) For each x ∈ int(Ar):

Are the neighbors of x all transported to the same yi?
• If so, then xr is in the interior of Ai:

– [optional] Add
∫

xr
c(z, yi) dµ(z) to P̃.

– Reduce the value of ν̃(yi) by µ(xr).
– Remove x from int(Ar).

The sets edg(Ar) and the reduced set int(Ar) combine to form Br.
(3) Is the desired refinement reached?

• If not:
– Refine Br to create Ar+1, increment r, and go to Step (1).

Optionally, once the desired refinement level is reached:
(4) Use Br to identify (n − 1) appropriate shift differences {ai j}

and solve for the shifts {ai}
n
i=1.

(5) Use P̃ and Br to approximate W1(µ, ν).

requirements, and to bypass the shortcomings of standard discrete approaches, we have turned to
the distributed relaxation methods known as auction algorithms; see [41] and [42]. (As it turns
out, there are natural connections between auction algorithms and the Oliker-Prussner algorithm
for semi-discrete transport; see [43] for details).

We chose to apply a new auction algorithm, the general auction, which we developed and
presented in [44]. The general auction is so named because it is based directly on the (more
general) real-valued transport problem, rather than the integer-valued assignment problem which
forms the foundation of other auction algorithms. As described in [44], it offers significant per-
formance advantages over other auction algorithms. Public domain C++ software implementing
the general auction can be found on the Internet at [45].

2.2.2. Step (4): computing the shifts
Once we have reached a desired level of refinement for the boundary, we can use the set

Br to identify (n − 1) shift differences ai j. Finding the shift differences is not necessary once
we have the boundary (which is why Step (4) is optional), but the shift differences allow one to
reconstruct the entire transport map.

By completing Step (4), one can reduce the transport map in Rd to a set of n real numbers
ai, greatly reducing storage requirements. Also, building the reconstructed transport map, and
comparing the value of each µ(Ai) to its corresponding ν(yi), effectively evaluates the actual (vs.
worst case) error associated with the boundary method’s solution.

It is also worth considering that the exact shifts {ai}
n
i=1 correspond to a transport map giving

the exact optimal solution of our semi-discrete problem. The approximated shifts {ãi}
n
i=1, unless

generating the same shift differences, correspond to a transport map giving the exact optimal
solution to a different semi-discrete problem, one whose measure ν at each yi, i ∈ Nn, corresponds
to the value of µ(Ãi). Hence, |µ(Ãi) − ν(yi)| is the error in measure when approximating Ai by Ãi.
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2.2.3. Step (5): approximating the Wasserstein distance
Because some applications focus on determining the transport map, rather than the Wasser-

stein distance, Step (5) is optional. One could also skip the computation of P̃ in Step (2), since
the Wasserstein distance can be computed in full using only the transport map defined by the
boundary set. However, we find it convenient to compute as much of the distance as possible
within the boundary method algorithm, establishing P̃ one box at a time during Step (2). By
the time we reach Step (5), the partial Wasserstein distance P̃ includes the exact cost of all the
identified interior regions, and all that remains is to determine the cost of the regions associated
with Br.

3. Mathematical support

In this section, we provide mathematical support for the boundary method, assuming that all
computations are solved exactly: both the discrete optimal transport problems handled by the
general auction and the determinations of mass and Wasserstein distance for individual boxes
(see Remark 2). We present three types of results: on the shift characterization, on our system of
equations, and, finally, on the boundary method itself.

3.1. Semi-discrete optimal transport and the shift characterization
Here we examine the features of the shift characterization, defined in Section 1.3, and con-

sider what they can tell us about the semi-discrete optimal transport problem itself. While many
of these results can be found in other works (e.g., [5]), detailing them fixes notation and sets the
stage for the original theorems developed in the following sections.

First, in Lemmas 3.1 and 3.2, we develop theoretical support for the boundary method.

Lemma 3.1. Let ai and Ai be defined as in Definition 1.4. Fix i ∈ Nn. If x ∈ Ai and j ∈ Nn, j , i,
then the following hold:

gi j(x) ≤ ai − a j, (3.1)
gi j(x) = ai − a j ⇐⇒ x ∈ Ai j, and (3.2)
gi j(x) < ai − a j ⇐⇒ x ∈ Ai \ A j, (3.3)

where gi j is defined in Equation (2.5) and Ai j in Equation (2.1).

Proof. Let us show Equation (3.1). By the definitions of Ai and F,

ai − c(x, yi) = F(x) ≥ a j − c(x, y j).

Rearranging terms gives
c(x, yi) − c(x, y j) ≤ ai − a j.

To show Equation (3.2), first note that Section 2.1 already explains how x ∈ Ai j implies
gi j(x) = ai − a j. Consider the converse: Assume that gi j(x) = ai − a j. Rewriting, we find that
a j − c(x, y j) = ai − c(x, yi) = F(x), with F defined in Equation (1.14). This implies x ∈ A j, and
since x ∈ Ai, therefore x ∈ Ai j. Equation (3.3) is a consequence of Equations (3.1) and (3.2).

Lemma 3.2. Let ai and Ai be defined as in Definition 1.4 and Ai j as in Equation (2.1). Assume
c satisfies the triangle inequality. For all i, j ∈ Nn, i , j,
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(a) If c(yi, y j) = ai − a j, then A j ⊆ Ai j.
(b) If c(yi, y j) < ai − a j, then A j = ∅.

Proof. For Part (a), because c satisfies the triangle inequality, for all x ∈ A,

c(x, yi) ≤ c(x, y j) + c(yi, y j)
c(x, yi) ≤ c(x, y j) + ai − a j

a j − c(x, y j) ≤ ai − c(x, yi).
(3.4)

Suppose x ∈ A j. Then ai − c(x, yi) ≥ a j − c(x, y j) = F(x), by Equation (1.14). Because F is
defined as the maximum such difference, this implies ai−c(x, yi) = F(x), and so x ∈ Ai. Further,
since x is an element of Ai and A j, x ∈ Ai j. Therefore, A j ⊆ Ai j.

To show (b), note that (3.4) now gives a j − c(x, y j) < ai − c(x, yi). Hence, for all x ∈ A,
F(x) ≥ ai − c(x, yi) > a j − c(x, y j). Therefore, A j = ∅.

Lemma 3.3. Let F(x) be defined by Equation (1.14). If the ground cost function c(x, y) is con-
tinuous on X × Y, then F(x) is a continuous function of x.

Proof. Assume c is defined as a continuous function in X × Y . Thus, for all i ∈ Nn, ai − c(x, yi)
is a continuous function of x. Since F is the maximum of a finite set of continuous functions, F
is itself a continuous function of x.

Definition 3.4 (F induces a µ-partition of A). Let F be as defined in Equation (1.14), and the
sets Ai as defined in Equation (1.15) for i ∈ Nn. Then one says F induces a µ-partition of the set
A if

1. µ(A) < ∞,
2. for all i, j ∈ Nn, i , j, µ(Ai j) = 0 (for Ai j as defined in Equation (2.1)),
3.

∑n
i=1 µ(Ai) = µ(A), and

4. for all i ∈ Nn, µ(Ai) = ν(yi) > 0.

Lemma 3.5. Suppose one has a semi-discrete transport problem, as described in Section 1.2.
Let F be as defined in Equation (1.14), the sets Ai as defined in Equation (1.15) for i ∈ Nn, and
B as defined in Equation (2.2). Then F induces a µ-partition of A if and only if µ(B) = 0.

Proof. If F induces a µ-partition of A, by Definition 3.4, µ(B) = 0. For the converse, assume
F and the sets Ai are defined as given, and let Ai j be defined by Equation (2.1). Because µ is
a probability density function, µ(A) = 1 < ∞. Because µ is a non-negative measure, µ(B) = 0
implies that, for all i, j ∈ Nn, i , j, µ(Ai j) = 0.

For any µ-measurable set S ⊆ X, S = S 1 ∪ S 2,

µ(S 1) + µ(S 2) = µ(S ) + µ(S 1 ∩ S 2),

and since µ(X) < ∞,
µ(S ) = µ(S 1) + µ(S 2) − µ(S 1 ∩ S 2).

Proceeding inductively, it follows that

S =

n⋃
i=1

S i, all µ-measurable =⇒ µ(S ) =

n∑
i=1

µ(S i) −
n∑

i=1

n∑
j=1
j,i

µ(S i ∩ S j).
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Thus,

1 = µ(A) =

n∑
i=1

µ(Ai) −
n∑

i=1

n∑
j=1
j,i

µ(Ai j) =

n∑
i=1

µ(Ai).

For all i, j ∈ Nn, i , j, µ(Ai ∩ A j) = 0, and therefore µ(Ai) = ν(yi).

Remark 3. Instances of µ(B) > 0 appear quite often, though (as we will show) µ(B) = 0 for
the p-norm cost functions we have assumed. For an example of µ(B) > 0 in the literature, see
Figure 37 of [46]. We include a nearly identical example as Figure 4(c) of our paper, along with
a discussion of this behavior.

Given our definition of the semi-discrete problem in Section 1.2, Corollary 4 of [6] provides
a sufficient condition for the existence of a Monge solution that is unique µ-a.e. For convenience,
we restate their conclusion here, as the following:

Theorem 3.6. Given the definition of gi j in Equation (2.5), suppose that the support of ν is finite,
c is continuous, µ is tight, and

µ
(
{x ∈ A | gi j(x) = k}

)
= 0 ∀ i, j ∈ Nn, i , j, ∀ k ∈ R. (3.5)

Then there exists an optimal transport map, T : X → Y, that solves the Monge problem, and T
is µ-a.e. unique.

This condition leads directly to the following theorem.

Theorem 3.7. A semi-discrete transport problem, as described in Section 1.2, has an associated
transport map T , a function F, as described in Equation (1.14), and sets {Ai}

n
i=1, as described in

Equation (1.15), such that for all x ∈ A,

x ∈ Åi for some i ∈ Nn =⇒ T (x) = yi, (3.6)

where Åi is the strict interior of Ai, as defined in Equation (2.3). In other words, F induces a
µ-partition of A and T agrees with F on A \ B. Furthermore, T is unique µ-a.e.

Proof. Let Ai j be defined as given in Equation (2.1), B as given in Equation (2.2), and gi j as
in Equation (2.5). Consider the requirements given in Section 1.2. Condition (2) ensures that
ν is finite, and Condition (3) implies c is continuous. We know that A ⊆ Rd, so A is a Polish
space, and Condition (1)(b) assures us that A is compact. Because every probability measure on
a compact Polish space is tight6, µ must be tight. Because Condition (3) requires that the ground
cost is equal to a p-norm with p ∈ (1, ∞),∣∣∣{x ∈ A | gi j(x) = k}

∣∣∣ = 0 ∀ i, j ∈ Nn, i , j, ∀ k ∈ R. (3.7)

By Condition (1)(a), µ is absolutely continuous, and so

µ
(
{x ∈ A | gi j(x) = k}

)
= 0 ∀ i, j ∈ Nn, i , j, ∀ k ∈ R,

6see e.g. Theorem 3.2 of [47, p. 29]
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as required by Equation (3.5) (see [48] for another argument). Therefore, the conditions of
Theorem 3.6 are satisfied.

Let the function F and sets {Ai}
n
i=1 be as described in Definition 1.4. For any i, j ∈ Nn, i , j,

Ai j ⊆ {x ∈ A | gi j(x) = k} for some fixed k ∈ R. Hence, it follows that µ(B) = 0, and thus, by
Lemma 3.5, F induces a µ-partition of A. Therefore, we can construct a transport plan T that
satisfies the semi-discrete problem and agrees with F on A \ B. Furthermore, by Theorem 3.6, T
is unique µ-a.e.

Remark 4. A close reading of the text of Theorem 3.7 reveals that the guarantee of µ(B) = 0
derives directly from the fact that |B| = 0; see Equation (3.7). Absolute convergence does the
rest. In practice, this means that the boundary method forces a unique transport map on all
of A, even regions where µ vanishes and any other map would achieve the same Wasserstein
measure. For an example of this, see Figure 6. This behavior stems from a natural (unstated)
corollary to Theorem 3.7: the boundaries identified by our method are a.e. unique with respect to
the Lebesgue measure. The convexity of A is required to guarantee the existence of the requisite
boundaries. Otherwise, the network of regions might not form a connected graph.

3.2. Existence of linearly independent boundary equations
To prove the existence of (n − 1) linearly independent equations of the form shown in Equa-

tion (2.6), we will investigate the structure of the boundary set using a connected graph.7

Definition 3.8. Assume the definition of Ai j given in Equation (2.1). Let G be a graph with
n vertices v1, . . . , vn. The edge (vi, v j) is contained in the edge set of G if and only if Ai j is
non-empty. We refer to G as the adjacency graph of our transport problem.

Lemma 3.9. Let G be defined as given in Definition 3.8. If the set A is convex and compact, then
G is a connected graph.

Proof. Assume to the contrary that G is not a connected graph. Then we can write G as the
union of two disjoint nonempty subgraphs, G = G1 ∪G2, such that no vertex v1 in G1 has a path
connecting it to any vertex v2 in G2.

Construct
Ã1 :=

⋃
vi∈G1

Ai and Ã2 :=
⋃

v j∈G2

A j,

where each subset is defined as in Equation (1.15). Since G1 , ∅ and G2 , ∅, Ã1 , ∅ and
Ã2 , ∅. Because G1 and G2 are disjoint, and no paths connect them, it follows that Ã1∩ Ã2 = ∅.
Since the union of G1 and G2 is G, Ã1 ∪ Ã2 = A.

Suppose Ai ⊆ Ã1, A j ⊆ Ã2. Then Ai j = ∅. Because A is a compact set, A is a closed and
bounded, and hence the definition given in Equation (1.15) implies that Ai and A j must each also
be closed and bounded. Thus, Ai and A j are disjoint compact sets in the Hausdorff space Rd.
This implies Ai and A j are separated by some positive distance εi j. Because this is true for all
Ai ⊆ Ã1 and A j ⊆ Ã2, there exists ε > 0, the minimum over all such εi j.

Let x1 ∈ Ã1, x2 ∈ Ã2, and for all t ∈ [0, 1], define

xt = (1 − t)x1 + tx2.

7For a different approach, where the cost is the squared-Euclidean distance, see [10].
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Because ε > 0, there exists (t0, t1) ⊆ [0, 1], |t1 − t0| ≥ ε, such that t ∈ (t0, t1) implies xt <
Ã1 ∪ Ã2 = A. This contradicts the convexity of A. Hence, G is connected.

Corollary 3.10. Assume n ≥ 2 and let Ai j be defined by Equation (2.1). If i ∈ Nn, there exists
j ∈ Nn, such that j , i and Ai j , ∅.

Proof. Assume the contrary for some i, and apply Definition 3.8. Since n ≥ 2, G includes at
least two vertices, and vi is disconnected from the rest of G, which contradicts Lemma 3.9.

Corollary 3.11. Let Ai j be defined by Equation (2.1) and B by Equation (2.2). If n ≥ 2, then the
boundary set B is nonempty, and for each x ∈ B, there exist i, j ∈ Nn such that i , j and x ∈ Ai j.

Proof. This follows from Corollary 3.10 and the definition of B in Equation (2.2).

Lemma 3.12. Assume a shift characterization, as described in Definition 1.4, where n ≥ 2 and
the shifts {ai}

n
i=1 are unknown. Let G be the adjacency graph of the transport problem given in

Definition 3.8, and let H be a subgraph of G that includes all n vertices. Define the system of
equations

S := {ai − a j = ai j | (vi, v j) ∈ the edge set of H}, (3.8)

where each ai j is given by some constant. The system of equations S is linearly independent with
respect to the shifts {ai}

n
i=1 if and only if H contains no cycles.

Proof. (=⇒) Suppose H contains the cycle (vi1 , vi2 , . . . , vik , vi1 ). Then S contains the linear
system

M


ai1
...

aik−1

aik

 =


ai1i2
...

aik−1ik
aik i1

 , where M =


1 −1

. . .

1 −1
−1 1

 .
Because det(M) = 0, we know S is linearly dependent.

(⇐=) Suppose instead that S is linearly dependent. Given the form of the equations in S , we
can assume without loss of generality that S contains the equations ai ji j+1 = ai j − ai j+1 , ∀ j ∈ Nk−1,
and that ai1ik = ai1 − aik is also in S . By the definition of S , these equations imply that the edges
(v1, v2), (v2, v3), . . . , (vk−1, vk), and (vk, v1) are contained in H. Together, these edges generate
the cycle (vi1 , vi2 , . . . , vik , vi1 ), so H contains at least one cycle.

Theorem 3.13. Assume a shift characterized problem, as described in Definition 1.4, where
n ≥ 2 and the shifts {ai}

n
i=1 are unknown. Then there exists at least one system of exactly (n − 1)

equations of the form ai − a j = ai j that is linearly independent with respect to the set of shifts
{ai}

n
i=1, with each ai j constant. No system of n independent equations exists.

Proof. Let G be as given in Definition 3.8. Because G is a connected graph, we can always create
a spanning tree H that is a subgraph of G. Let S be the corresponding set of linear equations,
defined as described in (3.8). As a spanning tree, H contains (n − 1) edges and H has no cycles,
so by Lemma 3.12, we know S contains exactly (n − 1) linearly independent equations.

Suppose a set S of n linearly independent equations exists, all of the form ai − a j = ai j.
Because there are n unknowns in the set of shifts, there is exactly one solution set {ai}

n
i=1. Fix

σ , 0 and for all i ∈ Nn, define ãi = ai +σ. For each equation in S , ãi − ã j = ai − a j = ai j. Thus,
{ãi}

n
i=1 is also a solution to S . This contradicts the uniqueness of {ai}

n
i=1, and therefore no such set

of n linearly independent equations exists.
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3.3. Discretization for the boundary method
In the first two subsections below, we give some results on how the grid-points interact with

the underlying space. In sections 3.3.3 and 3.3.4 we present error bounds. In section 3.3.5 we
consider issues of volume and containment: here we ensure that one can have B ⊆ B̄r for all
r, and show that |B̄r | → 0 as r → ∞. Finally, Section 3.3.6 puts bounds on the error for the
Wasserstein distance approximation.

3.3.1. Discretization definitions
As described in Section 2.2, we discretize the region A using a regular Cartesian grid, and

refine the grid over multiple iterations, with the aim of refining only the grid region containing
the boundary set.

Definition 3.14. LetV be the set of adjacency vectors for all discretizations of A. We chooseV
to be the linear combinations of the standard unit vectors, e1, . . . , ed, with coefficients ±1. We
specifically exclude the zero vector from the set, so |V| = 3d − 1. If d = 2,V equals

V := { (−1, −1), (0, −1), (−1, 0), (−1, 1), (1, −1), (1, 0), (0, 1), (1, 1) }. (3.9)

Let r ∈ N be the current discretization level, and w = wr be the width of the discretization
at level r. Let Ar be the r-th point set, the set of points x included in the r-th discretization of
A. Since we discard boxes of µ-measure zero during the transport step, assume without loss of
generality that µ(xr) > 0 for all x ∈ Ar.

For each iteration r, let
Ar

i = Ai ∩ Ar. (3.10)

for all i ∈ Nn. For all x ∈ Ar, the points in Ar that are adjacent to x constitute a subset of the
neighbors of x,

N(x) := {x + wrv | v ∈ V}. (3.11)

Lemma 3.15. Let Ar be the set of points included in the r-th discretization of A, and assume the
definition of N given in Equation (3.11). For all x, x0 ∈ Ar, if x ∈ N(x0), then x0 ∈ N(x).

Proof. This follows from Equation (3.11) and the adjacency vectors established in Definition 3.14:
for all k ∈ Nd, ek ∈ V ⇐⇒ −ek ∈ V.

We now formalize our idea of the r-th interior and boundary point sets used in our discretiza-
tion. For all i ∈ Nn, define the r-th iteration interior point set associated with Ai as

År
i := {x ∈ Ar

i | ∀v ∈ V, x + wrv ∈ Ar
j =⇒ j = i}. (3.12)

Define the r-th boundary point set as

Br := Ar \

n⋃
i=1

År
i , (3.13)

and let
Br

i := Br ∩ Ai (3.14)

for all i ∈ Nn. The r-th evaluation region, the subset of A enclosed by the discretization Ar, is
defined as

Ār := { xr | x ∈ Ar }, (3.15)

and the r-th boundary region, the subset of A enclosed by the boundary point set Br, is given by

B̄r := { xr | x ∈ Br }. (3.16)
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3.3.2. Distance bounds
Though the discretization is fully defined, it still needs to be related back to the sets Ai j and

the boundary set B. To do this, we first bound the distance separating Br and Ai j.

Lemma 3.16. Let Ar be the set of points included in the r-th discretization of A, wr the width
at that discretization, and V the adjacency vector set satisfying Definition 3.14. Assume Ai j is
defined by Equation (2.1), edg(·) by Equation (2.8), and Br

i by Equation (3.14). Suppose A is
convex, c is a p-norm on X × Y, and Br

i , ∅. For each xi ∈ Br
i , either xi ∈ edg(Ar) or there exists

a point x j = xi + wrv, with v ∈ V, such that x j ∈ Br
j for some j , i. Thus, if xi < edg(Ar), the

distance from xi to the set Ai j, as measured with respect to the ground cost c, is bounded above
by c(xi, x j).

Proof. Recall the definition of Ar
i in Equation (3.10). Assume xi ∈ Br

i \edg(Ar). By the definition
of Br given in Equation (3.13), there exists x j = xi + wrv ∈ Ar

j ∪ N(x0) for some j , i, where
N(x0) is the set of neighbors of x0 as defined in Equation (3.11). By Lemma 3.15, xi ∈ N(x j),
and since xi ∈ Ar

i , we have x j ∈ Br
j. Thus, xi ∈ A and x j ∈ A, and because A is convex, this

implies
{txi + (1 − t)x j | t ∈ [0, 1]} ⊆ A.

Because c is continuous on X × Y , Lemma 3.3 applies. Hence, F is continuous on A. There-
fore, because xi ∈ Ai and x j ∈ A j, there exists t∗ ∈ [0, 1] such that b = t∗xi + (1 − t∗)x j ∈ Ai j.
Then b = xi + (1 − t∗)wrv, so by applying the ground cost we have

‖b − xi‖p = ‖(1 − t∗)wrv‖p = (1 − t∗)‖wrv‖p ≤ ‖wrv‖p = ‖x j − xi‖p.

Therefore, c(xi, b) ≤ c(xi, x j).

Because we can bound the ground cost between the points in Br \ edg(Ar) and the set Ai j

in terms of the ground cost between neighboring points, it is worth identifying a bound on that
ground cost between neighbors.

Lemma 3.17. Suppose c = ‖·‖p, p ∈ [1, ∞] and assume a shift characterized problem in Rd.
Let N be defined as given by Equation (3.11) and Br

i as given by Equation (3.14). For the r-th
iteration of the boundary method, given width wr, there exists a maximum Mr such that, for all
xi ∈ Br

i and x j ∈ Br
j, where i, j ∈ Nn and i , j, if x j ∈ N(xi), then c(xi, x j) ≤ Mr ≤ wrd1/p.

Proof. Let xi and x j be defined as above. By applying the definition given in Equation (3.13),
x j = xi + wrv for some v ∈ V. For our Cartesian grid V, ‖v‖p achieves its maximum when
v = 1d = (1, . . . , 1) ∈ Rd, so

c(xi, x j) = ‖wrv‖p = wr‖v‖p ≤ wr‖1d‖p = wrd1/p.

Therefore, there exists maximum Mr such that, for all xi ∈ Br
i and x j ∈ Br

j, c(xi, x j) ≤ Mr ≤

wrd1/p.

3.3.3. Error bounds for shift differences
In order to bound the error on the Wasserstein distance, we merely require a finite bound

on the errors for the individual shift differences, ai j. However, accurately computing the shift
differences themselves is also important, and for that reason, we also present theorems that more
finely bound the error on ai j for important ground cost functions. Because estimates are generated
using one or more computations of gi j(x), the magnitude of these errors is dependent on the
point(s) chosen.
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Lemma 3.18. Let Ai j be defined by Equation (2.1), and ai j by Equation (2.6). Suppose the
ground cost c satisfies the triangle inequality. Let x ∈ A and i, j ∈ Nn such that i , j. The error
resulting from approximating ai j at x is bounded above by |αi j(x)| ≤ 2c(x, b), where

αi j(x) :=
[
c(x, yi) − c(b, yi)

]
+

[
c(b, y j) − c(x, y j)

]
, (3.17)

and b is the point in Ai j nearest to x with respect to the ground cost.

Proof. Assume b ∈ Ai j is the closest point in Ai j to x. Then

c(b, yi) − c(b, y j) = gi j(b) = ai j.

For every x ∈ A, there exists some αi j(x) ∈ R such that

c(x, yi) − c(x, y j) = ai j + αi j.

By rearrangement and substitution, we have

αi j(x) = −ai j + c(x, yi) − c(x, y j)
= −

[
c(b, yi) − c(b, y j)

]
+ c(x, yi) − c(x, y j)

=
[
c(x, yi) − c(b, yi)

]
+

[
c(b, y j) − c(x, y j)

]
.

Since c satisfies the triangle inequality,

c(x, yi) − c(b, yi) ≤ c(x, b) + c(b, yi) − c(b, yi) = c(x, b).

Thus,
|c(x, yi) − c(b, yi)| ≤ |c(x, b)| = c(x, b),

and, by a similar line of reasoning, |c(b, y j) − c(x, y j)| ≤ c(x, b). Therefore,

|αi j(x)| ≤ |c(x, yi) − c(b, yi)| + |c(b, y j) − c(x, y j)| ≤ 2c(x, b).

In addition to bounding the error for individual points x, we can also establish meaningful
global bounds.

Lemma 3.19. Assume a shift characterized problem in Rd, where c is a p-norm, p ∈ [1, ∞].
Let wr be the width of the discretization during iteration r, and let xr indicate the box of width
wr centered at the point x. Let B be defined by Equation (2.2), N by Equation (3.11), and Br

i by
Equation (3.14). Taking αi j as defined by Equation (3.17) and B̄r as given by Equation (3.16),
let αmax be the maximum value of |αi j(x)| over all x ∈ B̄r and i, j ∈ Nn, such that: (1) i , j,
(2) x ∈ xr

i for some xi ∈ Br
i , and (3) Br

j ∩ N(xi) , ∅. Then αmax ≤ 4wrd1/p and for all x ∈ B̄r,
‖x − B‖p ≤ 2wrd1/p.

Proof. Suppose x ∈ B̄r. By the definition of our grid, x is contained in some G = Conv(S ),
where S is a finite set of neighboring grid points. For each xa, xb ∈ S , xb ∈ N(xa), and hence
xb = xa + wrv for some v ∈ V, the adjacency vectors described in Definition 3.14. Since
‖v‖p ≤ d1/p, c(xa, xb) ≤ wrd1/p. Because xa and xb were arbitrarily chosen, this is true of every
pair of vertices of G. By the definition of G, x can be written as a convex combination of the
points in S . Therefore, for any fixed x0 ∈ S , c(x, x0) ≤ wrd1/p.
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Recall the definition of Br given in Equation (3.13). Because x ∈ B̄r, Conv(S ) ∩ Br must
be nonempty. Assume without loss of generality that x0 = xi ∈ Br

i for some i ∈ Nn. Because c
satisfies the triangle inequality, Lemma 3.18 applies. Hence, there must exist a point x j ∈ Br

j, a
neighbor of xi, with j , i, and a point b ∈ Ai j such that c(xi, b) ≤ c(xi, x j) ≤ wrd1/p. Applying
the triangle inequality, we find that

c(x, b) ≤ c(x, xi) + c(xi, b) ≤ 2wrd1/p.

Therefore, ‖x − B‖p ≤ 2wrd1/p and αmax ≤ 4wrd1/p.

3.3.4. Error bound for ground costs
In preparation for bounding the Wasserstein distance error, we now bound the error on the

ground cost c with respect to individual points in B̄r.

Lemma 3.20. Given a shift characterized transport problem in Rd, with ground cost c = ‖·‖p,
p ∈ [1, ∞]. Assume wr is the width of the discretization at the r-th iteration and let π̃∗ be
an approximated transport plan with associated transport map T̃ , obtained using the boundary
method with discretization wr. Suppose π∗ is an optimal transport plan with associated map T,
and let x in A such that T (x) = yi, but T̃ (x) = y j. Then the error in the ground cost at the point x
is equal to |gi j(x)|, where gi j is defined as given in Equation (2.5). Furthermore, there exists γmax

such that, for all such x ∈ A with T (x) = yi and T̃ (x) = y j for some i , j,

|gi j(x)| ≤ γmax ≤ max
1≤i<n
i< j≤n
Ai j,∅

|ai − a j| + 4wrd1/p < ∞. (3.18)

Proof. Let x ∈ A such that T (x) = yi, but T̃ (x) = y j. Then the error in the ground cost at x equals

|c(x, yi) − c(x, y j)| = |gi j(x)|.

As a consequence of Lemma 3.19:

|gi j(x)| = |c(x, yi) − c(x, y j)| ≤ |ai j| + |αi j(x)| ≤ max
1≤i<n
i< j≤n

|ai j| + 4wrd1/p < ∞.

The result is independent of x, i, and j, and therefore there must exist some γmax ≤ max1≤i<n
i< j≤n

|ai j|+

4wrd1/p < ∞.

3.3.5. Volume and containment for the boundary region
As shown in Section 3.3.4, the ground cost error for individual points is finitely bounded over

a wide range of admissible ground cost functions. By definition, the measure µ is bounded. We
propose to identify the largest possible region in which the ground cost error can be non-zero,
and to show that the area of that region goes to zero as r goes to infinity. With this, we will show
that the boundary method converges with respect to the Wasserstein distance.

In Equation (3.16), we defined a region B̄r based on the point set Br. For this, we need to
know that we can choose an initial width w1 such that, for all iterations r, B ⊂ B̄r. Theorem 3.21
guarantees that such a width exists, and gives a sense of the relevant features driving the choice
of w1. For details about the numerical considerations involved, see Remark 5.
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Theorem 3.21. Assume c is a p-norm, p ∈ [1, ∞], and A = [0, l]d. There exists an initial width
w1 such that, for all wr such that wr ≤ w1, x ∈ År

i , as defined by Equation (3.12), implies the box
of width wr centered at x, given by xr, satisfies xr ⊆ Åi, where Åi is the strict interior of Ai, as
defined by Equation (2.3).

Proof. Recall the definition of Ai given by Equation (1.15), Ai j given by Equation (2.1), B given
by Equation (2.2), and gi j given by Equation (2.5). Let B(x, s) indicate the open ball of radius
s (with respect to the p-norm c) centered at x and C(x, s) indicate the d-dimensional cube with
side length s (with respect to the Euclidean distance) centered at x. Because c is a p-norm, for
each i ∈ Nn, yi ∈ Åi, and therefore there exists δi > 0 such that B(yi, δi) ⊆ Åi. Thus, there exist
ε > 0 and δ ≥ ε, such that, for any i ∈ Nn, c(x, yi) < δ implies C(x, 4s) ⊆ Åi for all s ≤ ε.

Let
S := A \

⋃
i∈Nn

B(yi, δ).

Because S is a closed set minus a finite number of open sets, S is closed.
If all Ai j are hyperplanes on S , the claim is self-evident for all w1 ≤ ε, so assume instead that

at least one Ai j is not a hyperplane on S . Let

G1 := sup
x∈S

i, j∈Nn
i, j

|∇gi j(x)| and G2 := sup
x∈S

i, j∈Nn
i, j

|∇2gi j(x)|.

There exists a maximum directional magnitude with respect to the Euclidean distance,

M = sup
x∈S

u∈Rd

i∈Nn

|xu − yi
u| ≤ l

√
d < ∞,

where |xu − yi
u| is the magnitude of the vector x − yi projected parallel to the direction of u.

Because c ∈ C2(S ), G1 and G2 are well-defined. For any x ∈ S and any unit direction vector
u ∈ Rd,

|∇u gi j(x)| =

∣∣∣∣∣∣ (xu − yi
u)|xu − yi

u|
p−2

(c(x, yi))p−1 −
(xu − y j

u)|xu − y j
u|

p−2

(c(x, y j))p−1

∣∣∣∣∣∣
≤ 2

Mp−1

δp−1 < ∞.

and

|∇2
u gi j(x)| = (p − 1)

∣∣∣∣∣∣ |xu − yi
u|

p−2

(c(x, yi))p−1 −
|xu − yi

u|
2p−2

(c(x, yi))2p−1

−
|xu − y j

u|
p−2

(c(x, y j))p−1 +
|xu − y j

u|
2p−2

(c(x, y j))2p−1

∣∣∣∣∣∣
≤ 2(p − 1)

Mp−2

δp−1

[
1 +

Mp

δp

]
< ∞.

Hence, G1 < ∞ and G2 < ∞.
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Assume the Gaussian curvature of the set Ai j at a point x ∈ Ai j is given by the function Ki j(x),
and when Ki j(x) , 0 the radius of curvature is given by Ri j(x) = |Ki j(x)|−1. Because Ki j(x) is
defined as a product of first and second directional derivatives of gi j, and those derivatives are
bounded, there exists a maximum absolute Gaussian curvature for B on S , given by

K := sup
i, j∈Nn

i, j
x∈Ai j∩S

|Ki j(x)| < ∞.

Because at least one Ai j is not a hyperplane, K > 0. Because K < ∞, for any i, j ∈ Nn, i , j and
any x ∈ Ai j ∩ S , the radius of curvature is bounded below: Ri j(x) ≥ K−1 > 0.

Let ε̃ =
2

K
√

d
. Suppose s ≤ min{ε, ε̃}, x0 ∈ År

i for some i ∈ Nn, and that µ(A j∩C(x0, s)) > 0

for some j ∈ Nn, j , i.
The set C(x0, 2s) is the cube surrounding x0 and its neighbors. Because x0 ∈ År

i , Ai j cannot
be a hyperplane in C(x0, 2s), and so Ri j is well-defined on C(x0, 2s). If there exist k ∈ Nn and
x ∈ C(x0, 2s) such that c(x, yk) < δ, then C(x0, 2s) ⊆ C(x, 4ε) ⊆ Åk, and since x0 ∈ År

i , this
implies k = i and C(x0, 2s) ⊆ Åi. This implies C(x0, s) ∩ A j = ∅, which contradicts the claim
that µ(A j ∩ C(x0, s)) > 0. Therefore, c(x, yk) ≥ δ for all k ∈ Nn and x ∈ C(x0, 2s). This implies
C(x0, 2s) ⊆ S . Hence, the intersection of the boundary Ai j with the cube C(x0, 2s) must have a
point with minimum radius of curvature,

xm := arg inf
x∈Ai j∩C(x0, 2s)

Ri j(x),

and since xm ∈ S , it must be the case that Ri j(xm) ≥ 1/K.
Because µ(A j∩C(x0, s)) > 0, but x0 < A j, there must exist xc ∈ Ai j∩C(x0, s). Hence, within

the cube C(x0, 2s), there must be a d-dimensional sphere (or partial sphere) of radius Ri j(xm),
not in Ai, whose boundary intersects xc (“partial” because the sphere may be cut off by one or
more of the planes bounding the cube). Call this (partial) sphere S̃.

Since x0 ∈ År
i , it must be the case that S̃∩ {N(x0)∪{x0}} = ∅, where N is the set of neighbors

defined by Equation (3.11). Because xc ∈ C(x0, s), and the maximum distance between grid
points in C(x0, 2s) is s

√
d, this requires Ri j(xm) < s

√
d/2. Hence, there exists xm ∈ Ai j ∩ S such

that

Ri j(xm) <
s
√

d
2
≤

1
K
.

This contradicts Ri j(xm) ≥ 1/K. Thus, it must be the case that for all j ∈ Nn, j , i implies
µ(C(x, s) ∩ A j) = 0, and therefore C(x, s) ⊆ Åi.

Setting w1 ≤ min{ε, ε̃} completes the proof.

Remark 5. By the boundary method’s very nature, any initial configuration must enclose the
boundary in a way that allows it to be distinguished from the region interiors. This is the meaning
behind the width w1 considered in Theorem 3.21. In principle, w1 may need to be quite small.
In practice, the potential problems associated with an overly-large w1 rarely occur, and they are
obvious when they do. We did occasionally observe an issue when the initial w1 was so large
that a region xr could contain an entire Ai (in other words, when w1 was significantly larger
than the δ described in Theorem 3.21). In those cases, the affected region’s ai was such that
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c(yi, y j) = ai − a j for some j , i, and the resulting transport plan had µ(Ai) = 0. Hence, the set
{ai}

n
i=1 and reconstructed regions {Ai}

n
i=1 directly revealed when such an error had occurred.

Also, because of the nature of the iterative method, a poor choice of w1 quickly becomes
obvious in the boundary region itself. Simply put, the loss of any portion of the boundary set
B destabilizes the method. Losing part of B creates a visible gap in the “wall” between two
regions, and the gap increases in size with each successive iteration. This behavior seems to
occur whenever some part of B is lost, no matter what the cause. For example, in our tests we
observed that discarding an edge box that intersects B results in the same progressive damage to
the boundary set. Not surprisingly, this also “stalls” the convergence of the Wasserstein distance
in ways that are obvious during computation.

In our numerical tests, we used w1 ≤
1/50n and obtained consistently reliable results.

Next, we show that a well-chosen initial width and grid arrangement can guarantee that, for
every iteration r, each point in Ar \ Br corresponds to a box in the interior of some region Ai.

Theorem 3.22. Assume c is a p-norm, p ∈ [1, ∞], and A = [0, l]d. Suppose the first iteration
width w1 is chosen as described in Theorem 3.21. Fix r, let wr ≤ w1, and let Ar be the bound-
ary set remaining at the r-th iteration. Given the definition of B from Equation (2.2), Ār from
Equation (3.15), B̄r from Equation (3.16), if B ⊆ Ār, then B ⊆ B̄r, and hence B ⊆ Ar+1.

Proof. We will show the conclusions by proving that x0 < B̄r implies x0 < B.
Suppose x0 < B̄r. If x0 < Ār, then x0 < B, since by assumption, B ⊆ Ār. Thus, we assume

instead that x0 ∈ Ār \ B̄r.
Because x0 ∈ Ār, we know x0 ∈ xr, the box of radius wr centered around some x ∈ Ar. We

have x ∈ Ai for some i ∈ Nn, where Ai is defined as given in Equation (1.15), and so by the
definition of Ar

i from Equation (3.10), x ∈ Ar
i . However, x0 < B̄r implies xr * B̄r, so from the

definition of Br given in Equation (3.13), x < Br. Because, x ∈ Ar
i \B

r = År
i (see Equation (3.12)),

by Theorem 3.21, xr ⊆ Åi. Hence, x0 ∈ Åi. Therefore, by Equation (2.3), x0 < B.

Now that we have ensured B ⊆ B̄r, we aim to construct a region of controlled volume enclos-
ing B̄r: B̄r ⊆ B̄r

+
. Then we show that, as r → ∞, the volume of B̄r

+
in Rd goes to zero with respect

to the Lebesgue measure. This will allow us to put a convenient upper bound on the volume of
B̄r in terms of the width wr. Because B̄r

+
exists solely in A, and not on the product space, we can

once again rely on the Euclidean distance in Rd.

Lemma 3.23. Assume a shift characterized transport problem in Rd, with c = ‖·‖p, p ∈ [1, ∞].
Suppose wr is the width used for the r-th iteration, and assume B is defined as given in Equa-
tion (2.2), B̄r as given in Equation (3.16). Let the region B̄r

+
⊆ A be defined as

B̄r
+

:= {x ∈ A | ‖x − B‖2 ≤ 2wr
√

d}. (3.19)

For all r, B̄r ⊆ B̄r
+
.

Proof. By definition, B̄r ⊆ A. Suppose x ∈ B̄r. Because we are applying the Euclidean norm,
Lemma 3.19 implies that ‖x − B‖2 ≤ 2wr

√
d, and since x ∈ A, x ∈ B̄r

+
.

Theorem 3.24. Assume c is a p-norm, p ∈ [1, ∞]. Let wr be the width of the discretization
applied during the r-th iteration. Given the definition of B in Equation (2.2) and B̄r in Equa-
tion (3.16), if µ(B) = 0 and there exists some constant L̃ such that |B| = L̃ < ∞ with respect to
the Rd−1 Lebesgue measure, then there exists some L < ∞, such that

∣∣∣B̄r
∣∣∣ ≤ wd

r L with respect to
the Rd Lebesgue measure.
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Proof. Recall the definition of B̄r
+

given in Equation (3.19). We know
∫

B̄r
+

dx =
∫

A χ
[
B̄r

+

]
(x) dx.

Let B(x, ρ) be the closed ball of radius ρ centered at x, and defined with respect to the Euclidean
distance. Write∫

A
χ
[
B̄r

+

]
(x) dx =

∫
A
χ
[{

x ∈ A | ‖x − B‖2 ≤ 2wr
√

d
}]

(x) dx

=

∫
A
χ
[{

x ∈ A | x ∈ B(z, 2wr
√

d) for some z ∈ B
}]

(x) dx,

≤

∫
A
χ[B](z)

(∫
A
χ
[
B(z, 2wr

√
d)

]
(x) dx

)
dz.

For all fixed x, ∫
A
χ
[
B(x, 2wr

√
d)

]
(x) dx ≤ Vold

(
2wr
√

d
)
,

where Vold(ρ) is the volume of the d-dimensional sphere of radius ρ, defined with respect to the
Euclidean distance. By using the Γ function, this volume can be written as

Vold
(
2wr
√

d
)

:=
πd/2

d
2 Γ

(
d
2

) (
2wr
√

d
)d

=


πd/2

(d/2)!

(
2wr
√

d
)d

if d = 2k for some k ∈ Z
2k!(4π)k

d!

(
2wr
√

d
)d

if d = 2k + 1 for some k ∈ Z.

Because the volume is independent of the point x ∈ A, we therefore have∫
B̄r

+

dx ≤
∫

A
χ[B](z)

∫
A
χ
[
B(z, 2wr

√
d)

]
(x) dx dz,

≤

∫
A
χ[B](z) Vold

(
2wr
√

d
)

dz = Vold
(
2wr
√

d
) ∫

B
dz = wd

r L,

where

L :=

L̃ πd/2

(d/2)!

(
2
√

d
)d

if d = 2k for some k ∈ Z
L̃ 2k!(4π)k

d!

(
2
√

d
)d

if d = 2k + 1 for some k ∈ Z.

Let x ∈ B̄r. By applying Lemma 3.19 with c the Euclidean distance, we know that for all x ∈ B̄r,
‖x − B‖2 ≤ 2wr

√
d, which implies x ∈ B̄r

+
. Thus, B̄r ⊆ B̄r

+
, which implies |B̄r | ≤ |B̄r

+
| ≤ wd

r L.

Remark 6. The interplay between B, Br, B̄r, and B̄r
+

is nontrivial. Figure 3 helps to visualize
it properly. In Figure 3(a), we show placement of some boundary set Br. It is crucial that
the subgrid created by Br completely surrounds B, because that is the only way to ensure that
B ⊆ B̄r. One can see in this image how a (very degenerate) choice of c, coupled with the right
arrangement of yi’s, might allow a small and sharply curved boundary set to slip unnoticed
between points.

As Figure 3(b) illustrates, each point in Br appears as the center of its corresponding box,
and the boxes completely cover the boundary set.

The region B̄r
+

is deliberately constructed to entirely cover all the boxes in B̄r. As Figure 3(c)
shows, its volume can be significantly larger than that of the boxes it contains. However, the
worst-case “thickness” given to B̄r

+
ensures that it will always enclose both B and B̄r.

24



(a) Br surrounding B (b) boxes B̄r covering B (c) region B̄r
+ covering B̄r

Figure 3: Detail from problem in Figure 5(a): Boundary set interactions near A0 ∩ A2 ∩ A3

3.3.6. The Wasserstein distance error
Theorem 3.25. Assume µ is absolutely continuous and let P∗ be the Wasserstein distance. Let
wr be the width of the r-th iteration of the boundary method. Given the definition of B in Equa-
tion (2.2) and B̄r in Equation (3.16), suppose B ⊆ B̄r, and that there exists some L such that
|B̄r | = wd

r L < ∞ with respect to the d-dimensional Lebesgue measure. If γmax < ∞ is the max-
imum error of the ground cost in the set B̄r, and P̃∗ is the Wasserstein distance approximation
obtained with the boundary method, then the value of µ on A is bounded by some M < ∞ and∣∣∣P̃∗ − P∗

∣∣∣ ≤ wd
r LMγmax, (3.20)

where the bound equals the maximum possible volume of B̄r multiplied by the maximum value of
µ and the maximum error of the ground cost.

Proof. If x ∈ A \ B̄r, then x has been identified as being in the interior of Ai for some i ∈ Nn.
Thus, the cost error associated with the points outside B̄r is zero.

Suppose instead that x ∈ B̄r. By definition, the absolute value of the difference between the
correct and approximated ground costs at x is less than or equal to γmax. Condition (1)(a) requires
µ to be absolutely continuous, so there exists M such that, for all x ∈ X, 0 ≤ µ(x) ≤ M < ∞.

Therefore, the error on the Wasserstein distance is bounded above by∣∣∣P̃∗ − P∗
∣∣∣ ≤ ∫

B̄r
γmax dµ(x) =

∫
B̄r
µ(x)γmax dx

≤

∫
B̄r

(M)γmax dx =
∣∣∣B̄r

∣∣∣Mγmax ≤ (wd
r L)Mγmax.

Remark 7. The bounds in Theorems 3.24 and 3.25 indicate that the volume of the boundary set
and the error of the computed Wasserstein distance decrease according to the dimension of the
space. Thus, we should expect our numerical tests to show a quadratic (in R2) or cubic (in R3)
decrease of the Wasserstein distance error. These decreases are clearly observed in practice, see
Section 4.
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4. Numerical results

4.1. Test conditions

As mentioned in Remark 2, some choices of µ may make it necessary to approximate µ(xr)

or
∫

xr
c(z, yi) dµ(z). However, the majority of numerical studies we have seen restrict to simple

choices of µ (most often uniform). For this reason, we restricted our examples to cases where the
cost and mass integrals can be written in a closed form.

4.1.1. The closed-form mass µ(xr)
The integral of µ over some box can be written as:

µ(xr) =

∫
xr
µ(z)dz = M(z)

∣∣∣∣
z∈xr

with M : X → R≥0
. (4.1)

Since µ is a probability density function, we must have
∫

A dµ = 1. For convenience, let µ̂ denote
an un-normalized version of µ, and similarly for M̂.

Using the linearity of the integral, one can use linear combination of simple functions for
which exact solutions are known. We can also construct more complex measures by partitioning
A into disjoint subsets. In this case, however, we add an additional restriction in order to be sure
that exact solutions can always be found: We µ-partition A into subsets S 1, . . . , S σ, such that
the boundaries of each S s fall on the initial set of grid lines. Assume that for each set S s, there
exists a density function µ̂s that is exactly solvable on S s. From these, we consider µ̂ (and M̂) to
be the piecewise functions defined on each S s as µ̂s (and M̂s, respectively).

Most of our computations were performed in two-dimensions. For such problems, given
iteration r and x = (x1, x2) ∈ A, µ̂(xr) can be written as

µ̂(xr) = = M̂(x1 + wr/2, x2 + wr/2) − M̂(x1 + wr/2, x2 − wr/2)

− M̂(x1 − wr/2, x2 + wr/2) + M̂(x1 − wr/2, x2 − wr/2).
(4.2)

The closed-form choices used in our numerical tests are shown in Table 1. As described above,
we used the table entries as building blocks in the construction of more complex measures.

Table 1: Closed-form options for µ
µ̂((x1, x2)) = 1

M̂(u, v) = uv
µ̂((x1, x2)) = xt

1xt
2, t > 0

M̂(u, v) = (t + 1)−2(ut+1vt+1)
µ̂((x1, x2)) = etx1 , t , 0

M̂(u, v) = t−1vetu

µ̂((x1, x2)) = etx2 , t , 0
M̂(u, v) = t−1uetv
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4.1.2. The closed-form Wasserstein distance over xr

We performed many tests where µ could be computed exactly but the Wasserstein distance
could not; see Section 4 for details. In such cases, we made no attempt to approximate P∗,
choosing instead to focus on the accuracy of the µ-partition generated by the approximate shift
set {ãi}

n
i=1.

However, there were a number of cases in two dimensions where the choice of µ and c
allowed for closed-form computations. In those cases, because the combination of c and µ gives
us an exact solution, there exists C : X × Y → R≥0 such that∫

xr
c(z, yi) dµ(z) = C(z, yi)

∣∣∣∣
z∈xr

. (4.3)

As in Section 4.1.1, we write Ĉ when working with µ̂.
Now consider X, Y ⊂ R2, x = (x1, x2) ∈ A, and y = (y1, y2) ∈ {yi}

n
i=1. When µ(xr) = 0, the

Wasserstein distance on xr is also zero. For those boxes where µ(xr) > 0, we can take advantage
of the uniformity to define the function Ĉ in terms of a single variable: the component-wise
distance between points given by (∆1, ∆2), where ∆1 = |x1 − y1|, ∆2 = |x2 − y2|. When the
Wasserstein distance over xr can be computed and is non-zero, it takes the form∫

xr
c(z, y) dµ̂(z) = Ĉ(∆1 + wr/2, ∆2 + wr/2) − Ĉ(∆1 + wr/2, ∆2 − wr/2)

− Ĉ(∆1 − wr/2, ∆2 + wr/2) + Ĉ(∆1 − wr/2, ∆2 − wr/2),
(4.4)

where Ĉ : R2 → R≥0 is an explicit function.
Table 2 gives Wasserstein distance functions Ĉ for c the 2-norm and the p-th power of some

p-norm (p ∈ [1,∞)). By leveraging the linearity of the integral and subdividing A into disjoint
sets, we can build combinations of ground costs and measures with closed form C. We used this
to perform tests in R2, with µ being either uniform or zero in relevant boxes.

Table 2: Closed-form options for C when µ is uniform or zero on A

c Ĉ(u, v)
2-norm 

1
6 u3 log

(√
u2 + v2 + v

)
+ 1

3 uv
√

u2 + v2 if(u, v) , 0
+ 1

6 v3 log
(√

u2 + v2 + u
)

0 if(u, v) = 0
p-th power
p-norm (p + 1)−1(up+1v + uvp+1)

4.2. Accuracy of the Wasserstein distance
4.2.1. When exact values are known.

When µ is uniform and the region boundaries are known exactly, we can use the formulas for
the ground cost given in Table 2 to compute exact values. The 2-norm was used for the problems
shown in Figures 4(a) and 4(b), and the 1-norm was used to generate Figure 4(c).
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(b) 4 × 4 grid arrangement
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(c) 2 points: “bad” 1-norm

Figure 4: Problems where the exact Wasserstein distance and set of shifts are known

For two points on the Northwest-Southeast diagonal, placed as shown in Figure 4(a), the
exact Wasserstein distance is equal to

P∗NWSE :=
1
96

[√
2 + 7

√
10 + sinh−1(1) + 2

√
2 sinh−1(2) + sinh−1(3)

]
≈ 0.3159707808963017.

Table 3(a) shows the absolute error for various w∗. Note that the actual decrease in error is
roughly quadratic in w∗: |P̃∗NWSE − P∗NWSE| ≈ 2.122(w∗)1.995.

Table 3: Wasserstein errors for the NW-SE, 4 × 4, and “bad” 1-norm problems

w∗ abs. error

2−9 8.42 × 10−6

2−10 2.11 × 10−6

2−11 5.27 × 10−7

2−12 1.32 × 10−7

2−13 3.30 × 10−8

2−14 8.24 × 10−9

2−15 2.06 × 10−9

2−16 5.15 × 10−10

2−17 1.29 × 10−10

(a) NW-SE errors

w∗ abs. error

2−9 2.02 × 10−5

2−10 5.04 × 10−6

2−11 1.26 × 10−6

2−12 3.15 × 10−7

2−13 7.88 × 10−8

2−14 1.97 × 10−8

2−15 4.93 × 10−9

2−16 1.23 × 10−9

2−17 3.08 × 10−10

(b) 4 × 4 errors

w∗ abs. error

2−9 8.66 × 10−6

2−10 2.16 × 10−6

2−11 5.40 × 10−7

2−12 1.35 × 10−7

2−13 3.32 × 10−8

2−14 8.26 × 10−9

2−15 2.06 × 10−9

2−16 5.15 × 10−10

2−17 1.29 × 10−10

(c) “Bad” 1-norm errors

When we have a 4 × 4 arrangement of boxes, with each yi in the center, as shown in Fig-
ure 4(b), the exact Wasserstein distance is equal to

P∗4×4 :=
1

24

[√
2 + sinh−1(1)

]
≈ 0.09564946455802659.

Table 3(b) shows the error. Again, the observed error decrease is roughly quadratic in w∗: |P̃∗4×4−

P∗4×4| ≈ 5.254(w∗)1.999.
Recall that the theorems presented in Section 3 offer no convergence guarantee for the be-

havior of the 1-norm. In fact, the optimal solution may not be µ-a.e. unique, in which case the set
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{Ai}
n
i=1 may not partition A. This is exactly what happens for the problem shown in Figure 4(c).

The problem is identical to that shown in Figure 4(a), except that c is the 1-norm. Because of
the change in norms, the Northeast and Southwest corners of A do not have unique transport
destinations. The loss of µ-a.e. uniqueness, and resulting failure to partition, is clearly visible in
the figure. However, the exact Wasserstein distance can still be computed, and is equal to

P∗bad :=
19
48
.

Table 3(c) shows the error. Even though the theorems do not guarantee convergence, and parti-
tioning fails, the decrease in error is nonetheless quadratic in w∗: |P̃∗bad − P∗bad| ≈ 2.575(w∗)2.016.

For all three problems, we know the exact shift values: since every point in A goes to the
nearest yi, the shift differences are all zero, which means every shift should be identical. In the
4 × 4 and “bad” 1-norm problems, the shift values are identical for every choice of w∗. For the
4 × 4 problem, this is a result of computing regions that exactly correspond to the structure of
our grid. For the “bad” 1-norm problem, the exactness derives from the relative simplicity of
ground cost computations. The shift values for the NWSE problem have an error whose decrease
is roughly linear with respect to w∗: |ã2 − ã1| ≈ 0.339(w∗)1.008. When w∗ = 2−16, this shift error
is 4.83 × 10−6.

4.2.2. When exact values are not known.
As Section 3.3.6 shows, even if the Wasserstein distance is unknown, the Wasserstein ap-

proximation error at the end of the r-th iteration is bounded above by∑
x∈Br

µ(xr) max
x0∈xr

gi j(x0), (4.5)

where i and j, i , j refer to the destinations of x and some neighbor. In practice, we can use
continuity to refine that estimate still further, as described in Section 2.2.3.

As wr → 0, maxx0∈xr gi j(x0)→ |ai j| for each i , j, and µ(B̄r)→ 0. If the boundary method is
working effectively, we can expect to see the Wasserstein distance error decreasing with respect
to µ(B̄r). If µ is uniform on A, that decrease should be linear with respect to the volume |B̄r |.

We considered the change in the computed Wasserstein distance for Example 2.1 using three
canonical ground costs: the 1-norm, the 2-norm, and the squared 2-norm. The resulting µ-
partitions are shown in Figures 7(a), 5(a), and 8(a), respectively. Since µ is uniform, and A =

[0, 1]2, Theorem 3.25 suggests that we should see a quadratic convergence for the 2-norm. (The
theorem makes no convergence claim for the 1-norm or the squared 2-norm.)

For each ground cost, we computed the Wasserstein approximation error in two ways:
1. The worst-case Wasserstein distance error bound, given by applying (4.5).
2. The rate of change with respect to a reference approximation,

∆P̃∗16(w∗) := ∆P̃∗16(2−m) =

∣∣∣P̃∗m − P̃∗16

∣∣∣∣∣∣P̃∗m+1 − P̃∗16

∣∣∣ , for m < 15.

For all three ground cost functions, the worst-case Wasserstein distance error is roughly linear
in w∗, and the rate of change of ∆P̃∗16 is roughly quadratic in w∗. Though Theorem 3.25 only
guarantees quadratic convergence for the 2-norm, we also observe quadratic convergence for the
1-norm and squared 2-norm. For this example, the 1-norm generated a µ-a.e. unique partition,
but comparable convergence was seen in tests where partitioning failed. Results are given in
Table 4.
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Table 4: Wasserstein approximation behavior with respect to w∗

c P̃∗16 errmax(w∗) ∆P̃∗16(w∗)

1-norm 0.25702262181 0.457(w∗)1.020 1.186(w∗)2.025

2-norm 0.20754605961 0.361(w∗)1.008 4.151(w∗)2.023

squared 2-norm 0.05290682486 0.221(w∗)1.008 2.668(w∗)2.029

4.3. µ-Partitions in R2

4.3.1. Uniform and non-uniform measures µ and ν
We include three examples with variations of µ and ν, shown in Figure 5. All three assume c

is the 2-norm.

y0
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y3

y4

(a) µ and ν uniform
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(b) ν non-uniform
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y13

y14

y15

(c) µ(x1, x2) = x1 x2

Figure 5: Partitions for uniform and non-uniform measures

In Figure 5(a), we assume µ is the uniform continuous probability distribution on A, and ν
is the uniform discrete distribution with n = 5. The five points where ν = 1/5 are placed in the
positions used in [33]. Figure 5(a) shows the µ-partition obtained by the boundary method; for
comparison, see [33, Figure 3 (right)].

Starting from the points shown in Figure 5(a), we next take the point y4 and split it into four
new points, each of one quarter-mass, positioned equidistantly from the point’s original location.
This gives us a non-uniform ν with four points of weight 1/5 and four of weight 1/20. We keep
µ uniform. The resulting µ-partition is shown in Figure 5(b).

In Figure 5(c), we choose the nonuniform probability density µ(x1, x2) = 1
4 x1x2. For ν, we

choose the uniform 4× 4 grid of points given in Figure 4(b). By comparing the results in Figures
4(b) and 5(c), the impact of µ’s nonuniformity becomes obvious. While the individual regions
no longer have equal Lebesgue measure, each has equal µ-measure 1/16. The larger regions in
the lower-left correspond to the lower density of µ in that corner, while the smaller regions in the
upper-right correspond to the higher concentration of µ-density there.
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4.3.2. Discontinuous and zero-measure µ
Next, we deliberately introduce a discontinuous µ that is not strictly positive:

µ(x) =

0 if x ∈ [0, 1/2]2

4/3 otherwise.
(4.6)

We still have
∫

A dµ(x) = 1, so µ is a probability density function on A = [0, 1]2. For ν, we use
the uniform 4 × 4 grid shown in Figure 4(b). Figure 6 shows the results.
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(a) boundary region B̄r
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(b) shift characterization
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(c) shaded zero-µ region

Figure 6: µ is zero in the lower-left quadrant

In Figure 6(a), we see the boundary set used to generate the solution. Points between regions
are retained, as are points adjacent to regions of measure zero. No computations are done on the
lower-left region, because any destination is equally valid on boxes of µ-measure zero.

However, when the shift definition is applied to the semi-discrete optimal transport problem,
there is only one valid shift-characterized solution over A. Figure 6(b) shows that solution. The
unique shift differences force the selection of a unique boundary set B, even in the region where
µ is zero.

Figure 6(c) shows the shift characterization again, but here the region of µ-zero measure is
shaded, helping to confirm visually that the regions have equal µ-measure. Figure 6(c) also shows
the locations of intersection points we identified using the boundary method. These intersections
were used to accurately compute the set of shifts.

4.3.3. Norms as ground cost functions
The computations in Sections 4.3.1 and 4.3.2 all assume the ground cost function equals

the 2-norm, but as Section 4.2.2 suggests, computation with other functions is quite possible.
Using the same problem solved with the 2-norm in Figure 5(a), we generated µ-partitions for a
wide range of p-norm ground costs. Results for the 1-norm, 10-norm, and∞-norm are shown in
Figure 7. Note that the 1-norm and ∞-norm converge to (µ-a.e. unique) solutions, even though
those norms are not covered by our theorems.

4.3.4. Other ground costs c
The computations above all assume that the ground cost function is a norm. However, the

boundary method works equally well on much more general ground cost functions. Three exam-
ples are shown in Figure 8.
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Figure 7: Equal area using different ground cost norms
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(c) p-polynomial ground cost

Figure 8: Equal area using non-norm ground costs

Figure 8(a) shows the result given by the squared 2-norm. Because the squared 2-norm is
not itself a norm, we were only able to make the most general mathematical claims regarding
its behavior. However, the boundary method has no trouble with it. In fact, as Section 4.2.2
indicates, its convergence behavior is practically identical to that of the p-norms.

When 0 < p < 1, the p-norm formula can still be applied, even though the resulting function
does not satisfy the triangle inequality. Formally, one has

cp(x1, x2) :=


∑d

k=1

[
|x2

k − x1
k |

p
]1/p

p ∈ (0, ∞)
maxk∈Nd |x

2
k − x1

k | p = ∞.
(4.7)

As Figure 8(b) illustrates, even these “p-function” transport problems can be approximated.
However, when p < 1, the regions become discontinuous and disconnected, as typified by the
“spikes” on the exterior walls. (The spike on the lower right is part of the region coupled with
y3, while the other four spikes are coupled with y2.) Note that the 1/2-function is concave. Such
functions are directly applicable to transport problems involving economies of scale; e.g., see [5].

Figure 8(c) shows a ground cost function defined as a polynomial combination of p-functions
with positive coefficients:

c(x1, x2) = 4c2(x1, x2)28/5 + 61c1/2(x1, x2).
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This function, like many other “p-polynomial” functions, is neither convex nor concave, chang-
ing behavior with distance.

4.4. µ-Partitions in R3

As we showed in Section 3, there is no theoretical obstacle to applying the boundary method
to higher-dimensional problems, though visual representation becomes more complex.

Figure 9: Three-dimensional semi-discrete solution with n = 5

The image in Figure 9 was generated by taking c to be the 2-norm, µ the uniform continuous
probability density, and ν the uniform discrete probability density with five randomly-placed
non-zero points in [0, 1]3. Even in this relatively simple case, it is impossible to find a single
point-of-view that clearly shows all five non-zero points while clearly illustrating the boundaries
of the µ-partitions. However, even though clear illustration is problematic, the computations
made with the boundary method were completely successful.

4.5. Scaling behavior

One important advantage to the boundary method is its reduction of the complexity of the
discretized problem, compared to traditional methods. Before considering the numerical results,
it is worth developing a generalized comparison that puts this reduction in perspective:
Suppose for the sake of argument that a discretization with width 2−M is required to solve a prob-
lem in R2 with N positive points in Y . Generating the full grid would create a product space X×Y
of size 22MN. Say the boundary method is used instead, with a fixed initial discretization width
of 2−4. Each application of Step (2) of the boundary method algorithm removes approximately
half the points in Ar, so by discarding interiors the method constructs a product space of size
2M+4N.

Assume that we compute solutions for both the boundary method and the full product space
using the same linear solver (e.g., the network simplex method). Using it to solve the largest
boundary problem of size 2M+4N, we have V = 2M+4 + N vertices and E = 2M+4N edges.
Solving over the full product space gives V = 22M + N vertices and E = 22MN edges. Hence,
even if we assumed a solver with complexity O(V) (and no such solver exists), the ratio would
be approximately 2M to M. Typically, it is closer to 22M to M.
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Of course, this improved complexity would be irrelevant if the constant factor was exces-
sively large. Fortunately, that this is not the case, as our next section illustrates.

Since we focus here on the semi-discrete problem, for purposes of evaluating complexity, we
assume X is discretized into Wd elements, and Y into N elements. Given W sufficiently large, the
resulting network has Wd + N ∼ O(Wd) nodes and WdN arcs.

4.5.1. Scaling on the plane with respect to W = 1/w∗
Here we consider scaling on the plane with respect to W = 1

w∗
. We used Example 2.1, with

µ and ν uniform and c the 2-norm. The locations of the 5 points where ν = 1/5 were fixed as
depicted in Figure 5(a). We defined target widths w∗ = 2−m, m ∈ N, and computed the time
taken by the boundary method. By repeating this process for a few different location sets (and
averaging them), we estimated the average scaling behavior of the boundary method with respect
to W. The test results are shown in Table 5(a), and the scaling equations are on the left side of
Table 6.

Table 5: Planar scaling with respect to W and N

N = 5
W T (sec) S (MB)
212 0.855 24.540
213 2.005 49.100
214 4.497 98.210
215 11.025 196.400
216 28.093 394.400
217 60.577 785.800
218 132.397 1571.840
219 292.158 3151.872
220 640.660 6309.888

(a) Scaling with respect to W

W = 210 W = 211

N T (sec) S (MB) T (sec) S (MB)
128 6.938 17.25 22.365 33.91
136 12.190 18.24 36.601 35.05
144 10.982 17.99 29.952 36.49
152 13.139 18.54 36.703 41.27
160 11.420 18.66 34.801 40.27
168 15.727 20.97 44.959 40.66
176 15.332 21.38 44.873 43.06
184 18.243 21.38 53.689 43.20
192 12.796 21.60 40.029 43.66

(b) Scaling with respect to N

Table 6: Time and storage scaling with respect to W and N separately

T (W) ≈ 4.356 × 10−5W ln W Time T (N) ≈ 4.582 × 10−2N ln N

S (W) ≈ 6.015 × 10−3W Storage S (N) ≈ 3.162 N1/2

4.5.2. Scaling on the plane with respect to N
To evaluate planar scaling with respect to N, we performed multiple runs in [0, 1]2 where

W = 211 was fixed and µ and ν were uniform. The N = n points where ν = 1/n were placed at
random locations in A. Because the resulting time data was highly dependent on point placement,
it was extremely noisy. Thus, we did ten runs for each N and took the median. We started with
N = 128, increasing by eights up to to N = 192, for a total of 100 tests. The results are shown
in the right-hand columns of Table 5(b). See the right side of Table 6 for scaling equations with
respect to N.
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4.5.3. Scaling interaction of W and N on the plane
Increasing N means one must consider the scaling behavior of the boundary method with

respect to N, as described in Section 4.5.2, above. However, there is another relevant limiting
factor for large N: the decreasing area size µ(Ai) = n−1 runs up against the accuracy of the
reconstruction. For the problem shown in Figure 10, the area of each region is 5.0 × 10−3. When
w∗ = 2−11, the maximum error for the area of the partition regions is 8.34 × 10−4. This is 16.7%,
about one-sixth of the size of each region.

(a) N = 200 points in R2 (b) µ-Partition

Figure 10: Partitioning with large N

If all we desire is the Wasserstein distance or the boundary set, this error need not be a
concern. However, if we want an accurate set of shifts, large N requires that we increase W to
match. Hence, we wanted to consider what happens as W and N increase in tandem.

As it turns out, the scaling we observe is consistent with the product of the two scaling
behaviors already determined: O(WN log W log N) with respect to time, and O(WN1/2) with
respect to storage. See Table 7 for approximate equations.

Table 7: Time and memory scaling with respect to both W and N

Time T (N, W) ≈ 2.853 × 10−6WN ln W ln N

Storage S (N, W) ≈ 1.538 × 10−3 WN1/2

4.5.4. Scaling in three dimensions and extrapolation to Rd

The computations described above can be repeated in three dimensions. We scale W sepa-
rately by taking a projection of Example 2.1 into the center of the cube [0, 1]3. Then we consider
the median of tests when W = 27 and N ranges from 8 to 80. Finally, we scale W and N together,
and consider their combined behavior. Approximate scaling equations are given in Table 8.

Taking the combined scaling equations for two and three dimensions, and extrapolating to
arbitrary dimension d ≥ 2, we anticipate scaling of

T (d, N, W) ∼ O(Wd−1N log W log N) and S (d, N, W) ∼ O(Wd−1N1/d).
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Table 8: 3-D scaling with respect to W and N

W alone
Time T (W) ≈ 6.878 × 10−5W2 ln W

Storage S (W) ≈ 2.341 × 10−2 W2

N alone
Time T (N) ≈ 2.849 × 10−1N ln N

Storage S (N) ≈ 2.315 × 102 N1/3

W and N
Time T (N, W) ≈ 3.531 × 10−6W2N ln W ln N

Storage S (N, W) ≈ 1.397 × 10−1 W2N1/3

5. Conclusions and future work

In this work, we presented the boundary method, a new technique for approximating solu-
tions to semi-discrete optimal transportation problems. We gave an algorithmic description and
mathematical justification. As we showed, by tackling only the boundary of the regions to be
transported, the method has very favorable scaling properties. Under the assumption that all
computations are exact, we gave sharp convergence results for p-norms with p ∈ (1, ∞), and
we presented numerical examples supporting those convergence results. We showed that the
boundary method can provide accurate approximations of the partition regions and Wasserstein
distance for a multitude of cost functions, including some that are not covered by our theorems:
the 1-norm, the ∞-norm, strictly convex non-norms such as the squared 2-norm, concave non-
norms such as p-functions with p ∈ (0, 1), and polynomial combinations of p-functions that
are neither concave nor convex. As we also showed, even when partitioning fails, the boundary
method can solve with accuracy and convergence comparable to the case where a partition ex-
ists. Our future work will consider applications of the boundary method to fully continuous mass
transportation problems and the impact of estimated computations on convergence.
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[42] D. P. Bertsekas, D. A. Castañón, A generic auction algorithm for the minimum cost network flow problem, Comput.
Optim. Appl. 2 (1993) 229–260.
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