
Orthonormal Integrators Based on

Householder and Givens Transformations ?

Luca Dieci a and Erik S. Van Vleck b

aSchool of Mathematics, Georgia Tech, Atlanta, GA 30332 U.S.A.

b Department of Mathematics, University of Kansas, Lawrence, KS 66045 U.S.A.

AMS(MOS) subject classifications. 65L

Abstract

We consider refined implementations of algorithms based on Householder and Givens
transformations to find the Q-factor in the QR factorization of a matrix solution
of linear time dependent differential systems. After discussing the algorithms, we
introduce a suite of integrators, QRINT, and provide numerical testing to show the
efficiency and accuracy of our techniques.

Key words: Householder and Givens transformations, orthonormal integrators.

1 Introduction

Recently there has been interest in techniques to integrate differential equa-
tions with orthonormal solutions; e.g., see [2,3,5,6]. Our interest in this work is
in the approximation of the orthonormal factor Q in the QR-factorization of p
columns of a matrix solution of an n-dimensional linear differential equation.
An important application of such a time dependent factorization is that it
allows for the computation of Lyapunov exponents; e.g., see [1,4].

In this paper we continue the development begun in [5] of methods for finding
Q based upon continuous Householder reflectors and Givens rotations: we in-
troduce new variables for the Householder reflectors, devise inexpensive checks
to determine when a change of coordinates is required, and provide complete
algorithms and a suite of code, QRINT, to find time dependent Householder
reflectors and Givens rotations. This provides an efficient and accurate means

? Work supported under NSF Grants #DMS-9973266 and #DMS-9973393.

Preprint submitted to Elsevier Science 15 July 2002

of approximating the orthonormal matrix function Q that automatically pre-
serves orthonormality of Q even in the more difficult case when p < n.

Consider the the initial value problem for X ∈ IRn×p, p ≤ n:

Ẋ = A(t)X , t ∈ [t0, tf] , X(t0) = X0 full rank ,

where A : t → IRn×n is of class Ck−1, k ≥ 1. Our aim is to efficiently
and accurately approximate the time dependent factor Q ∈ IRn×p in a QR
factorization of X(t). It is well understood that the QR-factorization of X is
unique only up to a choice of signs for the diagonal of R. Once a fixed choice
of signs for the diagonal of R is selected, the matrix valued functions Q and
R exist and are as smooth as X. A common approach is to approximate Q
(and R) by applying numerical integration schemes to the differential equation
it satisfies. Let Q0R0 be the QR-factorization of X0. To derive a differential
equation for Q, differentiate the relation X = QR, make use of triangularity
of R, let S = QT Q̇, observe that S ∈ IRp×p must be skew-symmetric, and
obtain the following differential equation for Q:

{

Q̇ = AQ − QQT AQ + QS ,
Q(t0) = Q0 ,

Sij =

(QT AQ)ij, i > j,
0, i = j,
−(QT AQ)ji, i < j.

(1)

In this work we take further the approach introduced in [5]: instead of solving
(1) directly, we solve for elementary factors in the form of continuous House-
holder reflectors or Givens rotations that, in analogy with their use in linear
algebra, may then be used to form Q. However, there are some important dif-
ferences between the linear algebra context and the time dependent context we
consider here. In particular, in the present context, the order in which Givens
rotators are applied is of utmost importance in order to avoid singularities in
the differential equations. Similarly, when using Householder reflectors, atten-
tion must be paid in order to avoid singularities in the resulting differential
equations. We will clarify these aspects in Section 2.

In Section 2, we discuss the methods we put forward. In Section 3 we dis-
cuss numerical issues that we confront when implementing techniques based
on these elementary transformations. We also give a new formulation in the
Householder case. In Section 4, we present QRINT, a suite of FORTRAN integra-
tors, and we illustrate performance on a number of examples. Conclusions are
in Section 5.

We note here that our focus is on the case of coefficient matrices A(·) which
are dense; that is, A has no particularly exploitable structure. In case A is
structured (symmetric, banded, etc.) some computational savings ought to be
possible, but these cases will be considered in future work.

2

2 Background and Householder and Givens representations

Many algorithms have been proposed for approximating the solution of (1).
E.g., see [3,9,10,6,1,5]. Whichever technique and/or reformulation of the prob-
lem one chooses to adopt, in our mind the following are desirable properties
to recover: (i) To obtain an orthonormal approximation, ideally not just at
grid points, but everywhere desired, at no extra cost; (ii) To be able to handle
without modifications both cases p = n and p < n; (iii) To have a cost per
step of O(n2p)–flops, and never of O(n3)–flops when p < n; (iv) To be able to
integrate the relevant differential equations with theoretical order restrictions
given only by the degree of differentiability of Q; (v) To be able to efficiently
proceed in adaptive step-size mode.

We can view the solution Q of (1) as a curve on the compact manifold of
orthonormal (orthogonal if p = n) matrices. The dimension of this manifold
is p2n−p−1

2
, which is therefore the number of degrees of freedom we have to

resolve. Naturally, the curve Q may be parametrized in many different ways,
and the choice of parametrization turns out to be important from the numer-
ical point of view. Furthermore, although the solution Q of (1) is a globally
defined and smooth function, a representation of Q need not be unique nor
globally smooth; we could choose to have a representation for Q on an interval
[t0, t1], another one on [t1, t2], etc.. Each representation of Q must be smooth
in the interval where is used, but may even fail to extend for all t. Finally, we
should appreciate that if Q1R1 and Q2R2 are any two QR factorization of X
at a given point, then Q2 = Q1D, where D is a (p, p) diagonal matrix of ±1,
chosen so that the diagonal of DR2 equals that of R1 (and hence DR2 = R1).

In the present work, and in [5], our approach is to represent a matrix Q which
gives a QR factorization of X as products of Householder or Givens transfor-
mations. We resolve the lack of uniqueness inherent in a QR factorization of X
by selecting the signs for Householder reflectors in a certain way, or applying
the rotators in a certain order. The precise way this is done will be explained
below. Still, it should be kept in mind that our choices on selecting such signs
and/or ordering are made so that the chosen representation can be formed
in a numerically stable way, and these choices can be made without explicit
knowledge of X (or R). It must be also realized that enforcing our criteria on
the choice of signs for Householder reflectors might very well end up giving
different factors Q on different subintervals: a trivial post-multiplication by a
diagonal matrix of ±1 will allow us to recover any Q we want; e.g., the one
for which the diagonal of R is positive.

3

2.1 Householder transformations

Suppose we are at tk and that we know X(tk) (e.g., tk = t0). Then, to find Q(t)
such that QT (t)X(t) = R(t), for t ≥ tk, we look for QT (t) = Qp(t) · · ·Q1(t),
with Qi(t) = QT

i (t), i = 1 . . . , p, the Householder matrices

Qi(t) =
[

Ii−1 0
0 Pi(t)

]

, Pi(t) = I − 2vi(t)vi(t)
T , ||vi||2 = 1.

After (i−1) transformations, the matrix X got transformed into Qi−1 . . . Q1X
and its first (i − 1) columns have been triangularized. Let us still call X the
transformed matrix, and let xi = X(i : n, i) be its i-th column we need to
triangularize. This is the role of Qi. So, we will set

ui(t) = xi(t) − σi‖xi‖e1 , vi(t) =
ui(t)

‖ui(t)‖
, (2)

and continue the triangularization process. To make sure that no loss of pre-
cision occurs when forming (2), the textbook choice for σi is (see [7]):

σi :=

{

−1, if eT
1 xi(tk) ≥ 0,

1, if eT
1 xi(tk) < 0.

(3)

In [5] we derived differential equations for the vi’s, which we now recall.

For simplicity, we omit the subindices, and thus use the notation v for vi, etc.,
and also use A for A(i : n, i : n), where the matrix A has been progressively
modified by the accumulated transformations:

(A, Qj)−update : A(t) := Qj(t)A(t)Qj(t) − Qj(t)Q̇j(t) , j = 1, . . . , i − 1 .(4)

Partition v as v =
[

(eT
1 v)
v̂

]

, let
[

a11

â1

]

be the first column of A, (0, âT
1,a) be

the first row of 1
2
(A − AT),

[

a11

â1,s

]

be the first column of As, and let Â and

Âs be the submatrices obtained from A and As, respectively, by deleting the
first row and column where As = 1/2(A + AT) and e1 is the first unit vector
(of appropriate dimension). Then, we have

d

dt

[

(eT
1 v)
v̂

]

=
[

0 cT − bT

b − c S − ST

] [

(eT
1 v)
v̂

]

, (5)

where we have set b =
2(eT

1
v)2−1

2
â1 + Âv̂(eT

1 v), cT := (−âT
1,av̂ + α)v̂T , S =

(
2(eT

1
v)2−1

2(eT
1

v)
â1 + Âv̂)v̂T and

4

α := (a11(e
T
1 v) + âT

1,sv̂)(2(eT
1 v)2 − 1) + 2(eT

1 v)v̂T (â1,s(e
T
1 v) + Âsv̂).

The differential equations (5) can be easily supplied with initial conditions at
t0 since X0 is known, and we can find a Q0 via Householder transformations
(in the v formulation, with the σ’s satisfying (3)). However, to describe the
typical step between tk and tk+1 = tk +hk the expression (3) used for choosing
the sign of σ must be modified since in practice we do not have X(tk). We
enforce (3) as follows, by only keeping track of the transformations.

Suppose we have found the Householder matrices at tk, coming from tk−1, call

them Q
(k−1)
i (tk). Call Q

(k)
i (tk) =

[

Ii−1 0

0 P
(k)
i (tk)

]

the possibly different initial

condition for the Householder matrices (that is, different v’s and σ’s) we need

in order to step past tk. Let K
(k)
0 = In. Inductively define σ

(k)
i , i = 1, . . . , p:

σ
(k)
i :=

{

−1, if σ
(k−1)
i eT

1 K
(k)
i−1P

(k−1)
i e1 ≥ 0 ,

+1, if σ
(k−1)
i eT

1 K
(k)
i−1P

(k−1)
i e1 < 0 ,

(6)

where the matrices K
(k)
i−1 ∈ IRn−i+1,n−i+1 , i = 2, . . . , p, are defined by

P
(k)
i−1(tk)K

(k)
i−2P

(k−1)
i−1 (tk) =

[

σ
(k−1)
i−1 σ

(k)
i−1 0

0 K
(k)
i−1

]

,

and, for i = 1, . . . , p, the matrix P
(k)
i (tk) is obtained so that

K
(k)
i−1P

(k−1)
i (tk)σ

(k−1)
i e1 = P

(k)
i (tk)σ

(k)
i e1 .

Thus, we need to find a Householder transformation which transforms the
left-hand side of this last equation into σ

(k)
i e1. This trivially gives new ICs for

the v
(k)
i (tk); the sign ambiguity in the vector v

(k)
i (tk) is resolved by forcing the

sign to that of the first component of v
(k−1)
i (tk). Thus, we can prescribe new

ICs for the v
(k)
i (tk). It should be stressed that “the choice (6) is the same as

(3), but (6) does not require knowledge of X”.

Remark 1 In linear algebra, see [7], the choice of signs as in (3) is justified in
order to avoid subtraction of (possibly) nearly equal numbers. Of course, this
is still true in our context, since we will need to form the reflectors. But there
is also another aspect to take into account in the present context. To find the
vi’s, we integrate (5) and in (5) there is a division by eT

1 vi when forming the

vector
2(eT

1
vi)2−1

2eT
1

vi
v̂ of S. Since vi has length one, we must make sure that eT

1 vi

is not a small number. But, (6) is equivalent to having

(eT
1 vi)

2 ≥
n−i+1
∑

j=2

(eT
j vi)

2 , i = 1, . . . , p . (7)

5

In particular, the vector
2(eT

1
vi)2−1

2eT
1

vi
v̂ is well scaled. Moreover, (7) can be used

to decide if the current Householder frames are numerically stable or not.

Householder on [tk, tk+1].

INPUT: tk, hk > 0, initial conditions Q
(k−1)
i (tk) , i = 1, . . . , p (i.e., the vectors

v
(k−1)
i at tk), and the σ

(k−1)
i .

(1) For i = 1, . . . , p, check to see if (7) holds true. If it fails, redefine σ
(k)
i

according to (6) and determine new Q
(k)
i (tk) =

[

Ii−1 0

0 P
(k)
l (tk)

]

accordingly

(redefine v
(k)
i (tk)), for i = 1, . . . , p

• For i = 1, . . . , p
(2) Let A = A(i : n, i : n)

(3) Find the Householder transformation P
(k)
i (t) by integrating (5) on [tk, tk+1]

(4) Do an (A, Qi) update (4)
• Endfor i.

OUTPUT: Q(k)(tk+1)
T = Q(k)

p (tk+1) · · ·Q
(k)
1 (tk+1), is such that Q(k)(tk+1)

T X(tk+1)
is triangular.

2.2 Givens transformations

Suppose at tk we know X(tk) (e.g., tk = t0). To find Q(t) such that QT (t)X(t) =
R(t), for t ≥ tk, we look for Q(t) = Q1(t) · · ·Qp(t), where Qi(t) is of the form

Qi(t) =
[

Ii−1 0
0 Gi(t)

]

, and each Gi, i = 1, . . . , p, is the product of elementary

planar rotations (Givens, or Jacobi, transformations) of the type

Qij(t) = I − (e1e
T
1 + eje

T
j) + Gij , Gij = cij(e1e

T
1 + eje

T
j) − sij(e1e

T
j − eje

T
1) ,

for j = 2, . . . , n − i + 1. Above, we have used cij and sij to express cos(θij(t))
and sij = sin(θij(t)), respectively, where the function θij(t) needs to be found.
Now, suppose we have triangularized the first i−1 columns of X, and still call
X the transformed matrix. The role of Gi is to triangularize xi := X(i : n, i),
the i-th column of the unreduced part of X.

In the standard linear algebra setting (see [7]), the rotators are safely applied
in their natural sequence Qi,i+1, . . . , Qi,n. But this may lead to instabilities in
our time dependent setting! In fact, the specification of the order in which the
rotators Qi,i+1, . . . , Qi,n are applied turns out to be key for numerical stability,
and therefore for accuracy and efficiency.

6

Order of rotators. Our strategy is

First rotator must annihilate largest entry of xi(2 : n − i + 1) . (8)

To be precise, define l to be the largest entry in absolute value of xi(2 : n−i+1):

l : Xi+l−1,i = max
2≤j≤n−i+1

|Xi+j−1,i| , (9)

and define the index array πi as

πi = [1, l, 2, . . . , l − 1, l + 1, . . . , n − i + 1] . (10)

Then, define (the ordering of the rotators) Gi as

Gi = Qi,πi(2) · · ·Qi,πi(n−i+1) . (11)

Remark 2 There seems to be no need to further refine (8) by selecting the
second rotator to annihilate the largest entry of the unreduced part, etc..

In [5], we derived differential equations for the elementary rotators, that is for
the θij or for the corresponding (cos, sin) pairs. To recall, omitting the row
index i (i.e., using θj for θij, etc.), these are

cπi(3) · · · cπi(n−i+1)
d
dt

θπi(2)

cπi(4) · · · cπi(n−i+1)
d
dt

θπi(3)

...
cπi(n−i+1)

d
dt

θπi(n−i)
d
dt

θπi(n−i+1)

=

απi(2)

απi(3)

...
απi(n−i)

απi(n−i+1)

. (12)

Here, for j = 2, . . . , n − i + 1, we have set

απi(j)(t) = eT
πi(j)

[QT
i,πi(n−i+1) · · ·Q

T
i,πi(2)

AQi,πi(2) · · ·Qi,πi(n−i+1)]e1 ,

and A is really A(i : n, i : n), which has been progressively modified by the
accumulated transformations:

(A, Qj)−update : A(t) := QT
j (t)A(t)Qj(t) − QT

j (t)Q̇j(t), j = 1, . . . , i − 1.(13)

Of course, since d
dt

[

cos(θij)
sin(θij)

]

=
[

− sin(θij)
cos(θij)

]

d
dt

θij, from (12) it is simple to

7

write differential equations for the (cos, sin) pairs directly:

cπi(3) · · · cπi(n−i+1)
d
dt

[

cπi(2)

sπi(2)

]

...

cπi(n−i+1)
d
dt

[

cπi(n−i)

sπi(n−i)

]

d
dt

[

cπi(n−i+1)

sπi(n−i+1)

]

=

[

0 −απi(2)

απi(2) 0

] [

cπi(2)

sπi(2)

]

...

[

0 −απi(n−i)

απi(n−i) 0

] [

cπi(n−i)

sπi(n−i)

]

[

0 −απi(n−i+1)

απi(n−i+1) 0

] [

cπi(n−i+1)

sπi(n−i+1)

]

.(14)

To supply initial conditions at t0 for the differential equations (12) and/or
(14), we enforce (8); that is, use (9), (10), and apply the rotators in the order
specified by (11). At each application of an elementary rotator on xi at t0,
there is a sign ambiguity; we resolve this ambiguity by forcing the first entry
of xi to be always positive as the rotators are applied (and thus, equal to ‖xi‖
after all the elementary rotators Qi,πi(2), . . . , Qi,πi(n−i+1), are applied). This
way, we can start the integration.

To describe the typical step between tk and tk+1 = tk + hk, the strategy just
outlined, in particular the expressions (9) and (10), must be modified, since
we do not have X at tk. To understand the way we do this, we first need the
following remark.

Remark 3 Suppose we are triangularizing the i-th column, and, without loss
of generality, assume that πi = [1, 2, . . . , n − i + 1] (if not, relabel the indices
accordingly). In the differential equations (12) or (14), multiplication by the
inverse of the diagonal matrix

diag(c3 · · · cn−i+1, c4 · · · cn−i+1, . . . , cn−i+1, 1)

is taking place. To avoid numerical instabilities, we would like to guarantee
that the smallest diagonal entry (in absolute value) is away from 0; clearly,
such entry is c3 · · · cn−i+1. Now, let xi,j denote the jth component of xi, j =
1, 2, . . . , n − i + 1. Then, using rotators to triangularize xi, we have

c2
j =

(
∏j−1

l=1 x2
i,l)

(
∏j

l=1 x2
i,l)

, so c2
3 · · · c

2
n−i+1 =

(x2
i,1 + x2

i,2)

‖xi‖
2 .

Therefore, as long as

x2
i,1 + x2

i,2 ≥ x2
i,j, j = 3, . . . , n − i + 1 , i = 1, . . . , p , (15)

is satisfied, we have

c2
3 · · · c

2
n−i+1 ≥

1

(n − i)
.

8

Furthermore, one can see that (15) is equivalent to having

k
∏

j=3

c2
j ≥ s2

k , k = 3, . . . , n − i + 1 , i = 1, . . . , p , (16)

and (16) can be used to decide if the current ordering of Givens’ transforma-
tions is numerically stable or not, without knowledge of X.

We are ready to describe how we modify the strategy which led us to (9) and
(10) after the first step. First of all, as long as (16) holds, we do not change the
present ordering of the rotators. In case (16) fails, we enforce (8) as follows,
by only keeping track of the transformations. Suppose we have found the
Givens transformation matrices at tk, coming from tk−1, call them Q

(k−1)
i (tk).

Call Q
(k)
i (tk) =

[

Ii−1 0

0 G
(k)
i (tk)

]

the possibly different initial condition for the

new Givens matrices (that is, different θ’s or cosines/sines) we need in order

to step past tk. Define K
(k)
0 = In, and inductively define

wi := K
(k)
i−1G

(k−1)
i (tk)e1 , for i = 1, . . . , p . (17)

Let l be the index of the largest entry (in absolute value) of wi(2 : n − i + 1).
Accordingly, define πi as in (10) and the ordering for the rotators relative to

G
(k)
i (tk) as in (11). Find initial conditions for the Q

(k)
i,j (tk) by enforcing that

all vectors
∏n−m+1

j=2 (Q
(k)
i,πi(j)

(tk))
T wi, m = n − 1, . . . , i, have positive first com-

ponent. This way, we define G
(k)
i (tk), hence Q

(k)
i (tk). Finally, for i = 2, . . . , p,

we define K
(k)
i−1 ∈ IRn−i+1,n−i+1 from

Q
(k)
i−1(tk)

T

(

Ii−2 0

0 K
(k)
i−2

)

Q
(k−1)
i−1 (tk) =

(

Ii−1 0

0 K
(k)
i−1

)

.

It should be stressed that “the choice just described for providing initial con-
ditions on the rotators at tk is equivalent to the strategy based on (11) and
first paragraph after (14) but does not require knowledge of X”.

Givens on [tk, tk+1].

INPUT: tk, hk > 0, initial conditions Q
(k−1)
i (tk) , i = 1, . . . , p (i.e., either the

(cos, sin) pairs or the θ values, and the ordering in which they had been ap-
plied).

(1) For i = 1, . . . , p, check to see if (16) holds true. If it fails, redefine the index
array πi and initial conditions for the rotators at tk. That is, for i = 1, . . . , p,
let Q

(k)
i = Qi,πi(2) · · ·Qi,πi(n+i−1), and find initial conditions for Q

(k)
i (tk) by

9

bringing wi(i : n) into e1 so that all rotated vectors
∏n−m+1

j=2 (Q
(k)
i,πi(j)

(tk))
T wi,

m = n − 1, . . . , i, have positive first component.
• For i = 1, . . . , p
(2) Let A = A(i : n, i : n).

(3) Find the transformation Q
(k)
i (t) by integrating the differential equations

(12) or (14) on [tk, tk+1].
(4) Do an (A, Qi) update (13).
• Endfor i.

OUTPUT: Q(k)(tk+1) = Q
(k)
1 (tk+1) · · ·Q

(k)
p (tk+1), is such that (Q(k)(tk+1))

T X(tk+1)
is triangular with positive diagonal entries.

Remark 4 We observe that –even through a change of initial conditions–
with our strategy the signs on the diagonal of R remain fixed when using
rotators to find Q.

3 Implementation

Here we describe how we implemented the algorithms put forward in the
previous section. Before doing so, however, we derive a different formulation
for the Householder transformations.

Consider the new variable w:

w =
1

eT
1 v

v , thus w =
[

1
ŵ

]

. (18)

Observe that (eT
1 v) = −σ

‖w‖
, so that the discussion relative to the choice of σ’s

(see (6)) stays unchanged. Since ẇ = dw
dt

=
[

0
dŵ
dt

]

, we have one less differential

equation to solve and a simplified form for the (A, Qi)-updates. Omitting the
indices for simplicity, the form of the typical update becomes

QAQ − QQ̇ = (19)

= A −
2

wTw
(w(wTA) + (Aw)wT) + 4

wT Aw

(wT w)2
wwT −

2

wTw
(wẇT − ẇwT) .

From (19), it is easy to derive the differential equation satisfied by ŵ. In fact,
this can be obtained from the requirement that (QAQ − QQ̇)e1 has only its
first entry not 0. Using the form of ẇ, and the same notation used to derive

10

(5), this requirement becomes

â1 −
2

wT w
((a11 + ŵT â1)ŵ + â1 + Âŵ) + 4

wTAw

(wTw)2
ŵ +

2

wT w

dŵ

dt
= 0 ,

from which we get the equation for ŵ:

dŵ

dt
= [a11 + ŵT â1 − 2

wT Aw

wTw
]ŵ + (1 −

wT w

2
)â1 + Âŵ . (20)

Remark 5 Division by wT w in (20) is perfectly safe, given the form of w. Of
course, if one uses the w-variables, obvious modifications are required in the
skeleton of the algorithm on page 6. E.g., (7) now will read

1 − (w2
i+1,i + . . . + w2

n,i) ≥ 0 . (21)

To summarize, for Householder methods, we have considered two possibilities:
(i) v-variables, and (ii) w-variables. In the v-variables, we need to integrate
(5) whose solution has norm 1 for all t, and we must maintain this property
under discretization, at gridpoints. We simply integrate (5) with an explicit
scheme followed by a renormalization at each step. The resulting method is
a “local projection” method for the v-variables and has cost of O(n2p)–flops
per step. As far as the integration for the w-variables, this can be carried out
with explicit schemes, with no need of renormalization.

As far as methods based on Givens transformations, we worked on obtaining
good codes only for the formulation in terms of the θ-variables, see (12), and
not for the (cos, sin)-variables. Naturally, it is simpler to work with the θ-
variables, and then form the rotators. But, there is also an accuracy reason
to prefer the θ-variables, since in all our tests they gave more accurate results
than their (cos, sin) counterpart. An explanation for this fact is the content of
the next Lemma.

Lemma 6 Let θ be the angle associated to the elementary rotation Q(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

. Let φ be an approximation to θ, and let Q(φ) be the ele-

mentary rotator associated to φ. Consider the error matrix E := QT (θ)(Q(φ)−
Q(θ)). If θ − φ = η, sufficiently small, then the error on the diagonal of E is
O(η2):

E =

[

−η2

2
+ O(η4) η + O(η3)

−η + O(η3) −η2

2
+ O(η4)

]

.

Proof. The proof follows from QT (θ)Q(φ) =
[

cos(θ − φ) sin(θ − φ)
− sin(θ − φ) cos(θ − φ)

]

.

In the general case of Q ∈ IRn×p, with notation similar to Lemma 6, writing
Q as product of rotators, and using Lemma 6 over and over, it is simple to

11

realize that an error of order η on the angles still gives an O(η2) error term
on the diagonal of E, whereas an error O(η) for the cos and sin would give an
O(η) error term for all entries of E.

Remark 7 The θ-variables are more properly seen as variables on a torus.
Indeed, also to avoid pathological cases in which the θ values would grow too
large and cause numerical difficulties, we always renormalize their values to
[−π, π], which we do by computing inverse tangents.

Remark 8 Householder methods based on the w-variables, and Givens’ meth-
ods based on the θ-variables parametrize Q using exactly p 2n−p−1

2
parameters:

the minimal number required.

QRINT. We wrote a suite of FORTRAN codes, QRINT, which approximate Q by
exploiting its representation in terms of Householder or Givens transforma-
tions. These codes are public and we encourage others to experiment with
them. 1 Briefly, in QRINT the user specifies which formulation is desired, which
integration formulas to use, variable or fixed stepsize integration, and OUTPUT

specifications. The rest is carried out according to the previous exposition with
some care for efficiency. We next outline some of the choices adopted in QRINT,
more extensive documentation can be found in the interface to the codes.

Discretization Schemes. In QRINT, two explicit integrators of Runge-Kutta
type are adopted as the basic schemes. The range of accuracy of interest is
between 10−2 and 10−10, and our schemes have been chosen with this accuracy
demands in mind. We implemented formulas of order 4 and of order 5, with
an associated embedded formula to be used in variable stepsize mode. The
formulas used are the 3/8-th rule, a scheme of order 4 with an embedded
scheme of order 3, and the formulas of Dormand-Prince of order 5 with the
embedded scheme of order 4; see [8]. Notice that with our schemes it is a trivial
matter to form orthogonal approximations also at the internal RK points, not
just at the grid points, at negligible extra cost.

Updates. To perform the updates (4) and (13), no extra function evaluations
are needed, since QRINT stores and uses the values obtained at the Runge-
Kutta stages.

Error Control. For variable time-stepping integration, we adopted the standard
mixed absolute/relative error control of [8, II-4] with some slightly different
heuristics. But, the most relevant changes to the standard strategies are due to
the nature of our methods, which triangularize one column of X at the time:
(i) we decide on step-size changes by monitoring the behavior of the error
on all columns independently, and then take the most conservative estimate
for the next step; (ii) there is no need to complete the entire integration step

1 www.math.gatech.edu/∼dieci or www.math.ukans.edu/∼evanvleck

12

for Q prior to rejecting the step. This is a pleasant outcome of the present
implementation, since often (see Section 4) a step failure occurs ahead of
having completed computation of all of Q.

Changes of signs or orderings. We have used the construction based on (6),
or (17), and following discussion, only if the tests (7), or (21), or (16), for the
v, w, or θ variables, respectively, failed. We have not succeeded in finding less
expensive ways to obtain new initial conditions in case these tests failed.

4 Codes & Examples

In the examples, we will refer to the performance of several options which are
available in QRINT, by using the following first letter convention: v=v-variables,
w=w-variables, t=θ-variables.

• Fixed stepsize codes.
· 3/8th rule: vrk38, wrk38, trk38. Thus, for example, wrk38 is a fixed

stepsize implementation using the Runge-Kutta 3/8th rule of the House-
holder method based on the w-variables.

· Dormand-Prince rule: vdp5, wdp5, tdp5.
• Variable stepsize codes. The naming convention is as above, but now the

first letter is a v to signify “variable stepsize”.
· 3/8th pair: vvrk38, vwrk38, vtrk38. For example, vvrk38 is the vari-

able stepsize implementation of the 3/8th pair for the Householder method
in v-variables.

· Dormand-Prince pair: vvdp5, vwdp5, vtdp5.

All runs of which below have been made on a workstation by using the f77

compiler with four optimization options: (1) No optimization, (2) O1, (3) O3,
and (4) O3 plus the options fast-math, unroll-loops, expensive-optimizations.
In our tables, we report on the following measures of performance:

- err: the error between computed and exact Q, if the exact Q is known.
- reimb: the number of reimbeddings needed to complete a given run. Here,

a reimbedding is a change of signs for Householder reflectors or a change
of orderings for Givens rotations. We increment the counter every time any
such change is performed.

- rejs/first: the total number of rejections (in variable stepsize mode) fol-
lowed by the rejections occurring while triangularizing the first column.

- cpu: the CPU time needed to complete a given run normalized to 1 for the
fastest run on the given problem. Here, the CPU time is the average of the
times obtained with the four different optimization options.

- nsteps: the total number of steps taken (in variable stepsize mode).

13

For the variable stepsize codes, we also include comparison with a tried and
true projected integrator, prk45, which integrates (1) with the well known
(and sophisticated) integrator RKF45 of Netlib, and then uses modified Gram-
Schmidt for the projection. We recall that RKF45 is a solver of order 5/4 whose
performance is comparable with the Dormand-Prince 5/4 pair we adopted
here.

Example 9 This is a problem chosen because the underlying fundamental
solution is both exponentially dichotomic and fast rotating. We have the co-
efficient matrix

A(t) =
[

β cos(2αt) −α + β sin(2αt)
α + β sin(2αt) −β cos(2αt)

]

,

and we seek Q associated to the QR factorization of X : X ′ = AX, X(0) = I.

The exact solution is X(t) =
[

cos(αt) − sin(αt)
sin(αt) cos(αt)

] [

eβt 0
0 e−βt

]

. We fix β =

100, α = 100, and consider integration on the interval [0, 10]. The problem
should cause difficulties to methods based on Householder transformations,
because of the fast rotation of Q. This does indeed produce several reimbed-
dings for Householder methods, but no appreciable deterioration in accuracy.
For the t methods there is only one equation to integrate:

θ̇ = α − β sin(2θ(t)) cos(2αt) + β sin(2αt) cos(2θ(t)) , θ(0) = 0 ,

which has the exact solution θ(t) = αt. So, one may expect no error while
integrating for θ. However, we automatically renormalize angles to [−π, π]
and this causes roundoff errors to enter in the picture.

Tables 4.1 and 4.2 summarize the results of our numerical experiments. For the
fixed step methods in Table 4.1 the small error for the t methods is notable and
this is mirrored by the superior performance for the variable step t methods
(see Table 4.2). Observe that prk45 is considerably more expensive than the
competing 5/4 codes (vvdp5, vwdp5).

Table 4.1. Example 9: fixed stepsize ∆t = 1.E − 3.

Meth err reimb cpu

tdp5 2.4E − 13 0 15.0
trk38 3.4E − 13 0 11.0
vdp5 2.5E − 9 318 16.0
vrk38 1.6E − 6 318 12.5
wdp5 3.9E − 8 318 14.0
wrk38 2.4E − 6 318 11.0

14

Table 4.2. Example 9: variable stepsize, tol= 1.E − 8.

Meth err reimb rejs cpu nsteps

prk45 1.4E − 8 − − 22.5 20803
vtdp5 3.8E − 8 0 172 1 596
vtrk38 1.5E − 8 0 155 1 695
vvdp5 3.4E − 9 318 0 17.0 9535
vvrk38 7.3E − 9 318 0 51.0 37883
vwdp5 4.2E − 9 318 637 17.0 10821
vwrk38 6.3E − 9 318 1380 36.0 31293

Example 10 This example was chosen because it exemplifies a class of sys-
tems of arbitrarily large dimension with no particularly exploitable sparsity
structure in the function A(t). We consider linearization about a traveling
wave solution of the parabolic Nagumo equation

ut = ε2uxx − f(u), x ∈ IR, t ≥ 0, f(u) = u(u − 1)(u − a), a ∈ (0, 1).(22)

The traveling wave ansatz uTW (x, t) = φ(x − ct) gives a 2nd order boundary
value problem with exact solution (unique up to translation)

φ(ξ) = 1
2
[1 ∓ tanh(

√

1
8ε2

· ξ)]

c = ±(1 − 2a)
√

ε2

2
.

(23)

If we linearize (22) about (23) we obtain the linear partial differential equation

ηt = ε2ηxx − f ′(uTW (x, t))η . (24)

To obtain a linear system of ordinary differential equations from this PDE, we
take x in the truncated interval [−1, +1], impose periodic boundary conditions,
and consider a Fourier collocation approach. Thus, for the grid points xj =
−1 + 2(j − 1)/n , j = 1, . . . , n, we seek an approximate solution z(t) by
requiring that (24) is satisfied at the grid points:

[zt = ε2∂xxz − f ′(uTW (x, t))z]x=xj
, j = 1, . . . , n .

We replace ∂xx with the spectral approximation A = F−1DF where F and
F−1 are the forward and backward Fourier transforms, respectively, and D is
the appropriate diagonal matrix containing the eigenvalues of ∂xx, and we end
up with the following system for Z = (z(x1, t), . . . , z(xn, t))T :

dZ

dt
= AD(t)Z , AD(t) = ε2A − diag(f ′(uTW (xj, t)), j = 1, . . . , n) . (25)

15

For our experiments we set the wave speed c = 10−1, the detuning parameter
a = 9/16, and the diffusion coefficient ε2 = 1.28. We integrate over the interval
[0, 10]. Results are tabulated in Table 4.3. Exact solution is not known, so
we measure the “error” by comparing the results at t = 10 of the different
methods against those obtained with TOL = 1.E − 12 (using vwdp5 and vtdp5

there is agreement to 13 digits); this “error” we list as errd in Table 4.3.
We note that prk45 failed with iflag = 6 (requested accuracy could not
be achieved using smallest allowable stepsize) for (n, p) = (32, 4). The w-
variables consistently proved most efficient for this problem. Interestingly, for
the different runs made with the t,v,w methods, all rejections occurred in
the first column except for the run with for n = 32 in which all except 14 for
vtdp5, 37 for vtrk38, 22 for vvdp5 and 33 for vvrk38 occurred in the first
column. For this particular example, the rk38 codes performed extremely well
with vwrk38 easily performing most efficiently. Finally, we observe the large
number of rejections of most codes for the case (n, p) = (32, 4); we suspect
that this is due to increased stiffness in the relevant differential equations, but
remain baffled as to why no rejections occurred when using vwrk38.

Table 4.3. Example 10: variable stepsize; tol= 1.E − 6.

Meth n/p errd reimb rejs cpu nsteps

prk45 8/8 1.46E − 6 - - 1.4 574
vtdp5 8/8 3.33E − 7 4 143 1.9 640
vtrk38 8/8 4.35E − 7 4 149 1.8 807
vvdp5 8/8 1.00E − 6 2 145 1.6 630
vvrk38 8/8 5.39E − 7 2 151 1.3 785
vwdp5 8/8 2.32E − 7 2 0 1.1 641
vwrk38 8/8 4.14E − 7 2 0 1 798
prk45 32/4 - - - - -
vtdp5 32/4 4.93E − 7 25 2398 438.8 9747
vtrk38 32/4 1.34E − 6 27 2512 366.2 11714
vvdp5 32/4 3.79E − 7 2 2402 279.8 9716
vvrk38 32/4 2.46E − 6 2 2525 227.1 11644
vwdp5 32/4 6.65E − 7 2 2249 219.8 9754
vwrk38 32/4 1.74E − 6 2 0 169.1 11739

5 Conclusions

The purpose of this work has been two-fold: (i) To give new formulations and
new algorithms for methods based on Householder and Givens transforma-
tions; (ii) To present QRINT, a suite of FORTRAN codes for finding Q by our
techniques. We believe that the methods put forward in this work, and their
implementation as laid down here, are a sensible way to find Q, and should

16

be used by people interested in comparative performance of other techniques.
It is for this reason which we took up the task to write QRINT, and trust that
it will prove useful to others. We should stress that we make no claim as far
as our codes –nor our techniques, for what matters– being superior to other
implementations.

While there is certainly room for improving QRINT, we believe that it is so-
phisticated enough that some conclusions about the relative merits of the
techniques examined herein can be drawn.

(1) In variable stepsize the dp5 codes generally outperform the rk38 codes.
The implementation in variable stepsize has proved very rewarding, since
most rejections occur far ahead of having computed all of Q. In constant
stepsize, however, the rk38 codes are less expensive and this makes up
for their lower order.

(2) Givens methods based on the θ-variables are accurate and efficient on
problems of small size, but become less efficient than the Householder
codes for larger problems because of the overhead associated to the fre-
quent evaluations of trigonometric functions.

(3) With the present level of implementation, and all things considered, the
methods based on the w variables are probably the best, followed by the
θ methods and the v-methods in this order.

(4) Since our approaches do not integrate (1) directly, it is quite possible that
at times our methods will outperform methods based on direct integration
of (1), while on other occasions the opposite will be observed. On the tests
presented, our methods seem generally superior to integration of (1) in
that comparison with the projected integrator prk45 appears favorable
to our new codes. On the other hand, there are situations where prk45

performs better than our codes: one such case is Example 5.4 of [5], where
prk45 is more accurate and less expensive.

References

[1] T. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel

manifold, Physica D 156 (2001), pp. 219–238.

[2] M. P. Calvo, A. Iserles, and A. Zanna, Numerical solution of isospectral

flows, Math. Comp. 66 (1997), pp. 1461–1486.

[3] L. Dieci, R. D. Russell, E. S. Van Vleck, Unitary Integrators and

Applications to Continuous Orthonormalization Techniques, SIAM J. Numer.
Anal. 31 (1994), pp. 261–281.

[4] L. Dieci and E. S. Van Vleck, Computation of a few Lyapunov exponents

for continuous and discrete dynamical systems, Appld. Numer. Math. 17 (1995),

17

pp. 275–291.

[5] L. Dieci and E. S. Van Vleck, Computation of orthonormal factors for

fundamental solution matrices, Numer. Math. 83 (1999), pp. 599–620.

[6] F. Diele, L. Lopez, and R. Peluso, The Cayley transform in the numerical

solution of unitary differential systems, Adv. Comp. Math. 8 (1998), pp. 317–334.

[7] G. H. Golub and C. F. Van Loan, Matrix computations, 2nd ed., The Johns
Hopkins University Press, 1989.

[8] E. Hairer, S. P. Nœrsett, and G. Wanner, Solving ordinary differential

equations I, Springer-Verlag, Berlin-Heidelberg, 1993, Second edition.

[9] D. Higham, Time-stepping and preserving orthonormality, BIT 37 (1997), pp.
24–36.

[10] H. Munthe-Kaas, Runge-Kutta methods on Lie groups, BIT 38 (1998), pp.
92–111.

18

